33 research outputs found

    Role of ambient air on photoluminescence and electrical conductivity of assembly of ZnO Nanoparticles

    Full text link
    Effect of ambient gases on photoluminescence (PL) and electrical conductivity of films prepared using ZnO nanoparticles (NPs) have been investigated. It is observed that NPs of size below 20 nm kept inside a chamber exhibit complete reduction in their visible PL when oxygen partial pressure of the surrounding gases is decreased by evacuation. However the visible PL from ZnO NPs is insensitive to other major gases present in the ambient air. The rate of change of PL intensity with pressure is inversely proportional to the ambient air pressure and increases when particle size decreases due to the enhanced surface to volume ratio. On the other hand an assembly of ZnO NPs behaves as a complete insulator in the presence of dry air and its major components like N2, O2 and CO2. Electrical conduction having resistivity ~102 - 103 {\Omega}m is observed in the presence of humid air. The depletion layer formed at the NP surface after acquiring donor electrons of ZnO by the adsorbed oxygen, has been found to control the visible PL and increases the contact potential barrier between the NPs which in turn enhances the resistance of the film.Comment: arXiv admin note: significant text overlap with arXiv:1008.249

    Characterization of doping levels in heteronuclear, gas-phase, van der Waals clusters and their energy absorption from an intense optical field

    Get PDF
    A simple mass spectrometric method has been developed to quantify dopant levels in heteronuclear clusters in the gas phase. The method is demonstrated with reference to quantification of the water content in supersonic beams of water-doped argon clusters. Such doped clusters have assumed much importance in the context of recently-reported doping-induced enhancement in the emission of energetic charged particles and photons upon their interaction with intense laser pulses. We have also measured the energy that a doped cluster absorbs from the optical field; we find that energy absorption increases with increasing level of doping. The oft-used linear model of energy absorption is found to be quantitatively inadequate.Comment: To appear in Chemical Physics Letter

    INSAT-2A and 2B development mechanisms

    Get PDF
    The Indian National Satellite (INSAT) 2A and 2B have deployment mechanisms for deploying the solar array, two C/S band antenna reflectors and a coilable lattice boom with sail. The mechanisms have worked flawlessly on both satellites. The configuration details, precautions taken during the design phase, the test philosophy, and some of the critical analysis activities are discussed

    Progressive hemorrhage and myotoxicity induced by echis carinatus venom in murine model: neutralization by inhibitor cocktail of n,n,n `,n `-tetrakis (2-pyridylmethyl) ethane-1,2-diamine and silymarin

    Get PDF
    Viperbite is often associated with severe local toxicity, including progressive hemorrhage and myotoxicity, persistent even after the administration of anti-snake venom (ASV). In the recent past, investigations have revealed the orchestrated actions of Zn2+ metalloproteases (Zn(2+)MPs), phospholipase A(2)s (PLA(2)s) and hyaluronidases (HYs) in the onset and progression of local toxicity from the bitten site. As a consequence, venom researchers and medical practitioners are in deliberate quest of potent molecules alongside ASV to tackle the brutal local manifestations induced by aforesaid venom toxins. Based on these facts, we have demonstrated the protective efficacy of inhibitor cocktail containing equal ratios of N,N,N', N'-tetrakis (2-pyridylmethyl) ethane-1,2-diamine (TPEN) and silymarin (SLN) against progressive local toxicity induced by Echis carinatus venom (ECV). In our previous study we have shown the inhibitory potentials of TPEN towards Zn(2+)MPs of ECV (IC50: 6.7 mu M). In this study we have evaluated in vitro inhibitory potentials of SLN towards PLA(2)s (IC50: 12.5 mu M) and HYs (IC50: 8 mu M) of ECV in addition to docking studies. Further, we have demonstrated the protection of ECV induced local toxicity with 10 mM inhibitor cocktail following 15, 30 min (for hemorrhage and myotoxicity); 60 min (for hemorrhage alone) of ECV injection in murine model. The histological examination of skin and thigh muscle sections taken out from the site of ECV injection substantiated the overall protection offered by inhibitor cocktail. In conclusion, the protective efficacy of inhibitor cocktail is of high interest and can be administered locally alongside ASV to treat severe local toxicity

    Topical application of serine proteases from Wrightia tinctoria R. Br. (Apocyanaceae) latex augments healing of experimentally induced excision wound in mice

    No full text
    Ethnopharmacological relevance Wrightia tinctoria R. Br. (Apocyanaceae) is a folk medicinal plant known to have immunomodulatory, anti-inflammatory and antihemorrhagic potential. Wrightia tinctoria latex is used for treatment of various clinical conditions including psoriasis, blisters, mouth ulcers, and extensively for topical application on fresh wounds to promote accelerated healing. Aims of the study To investigate the wound healing potential of Wrightia tinctoria latex proteases using a mouse model. Materials and methods Proteolytic activity of Wrightia tinctoria latex proteases (WTLP) was determined on various substrates (casein, gelatin and collagen (type-I and IV)). The thermal stability and the class of proteases present in WTLP were determined using heat treatment and specific protease inhibitors, respectively. Excision wound model in mice was used to evaluate the healing potential of WTLP application (twice daily, 10 mg/kg). Neosporin, a standard drug, was used for comparison. The progression of healing was monitored using physical (wound contraction), biochemical (collagen content, catalase and MMP activity) and histological examinations. Results WTLP contains thermostable serine proteases, which are completely inhibited by PMSF. WTLP showed strong caseinolytic, gelatinolytic and collagenolytic activity. The excision wound healing rate upon WTLP treatment was significantly higher than (>2-fold) the control group (49% vs. 18%, *p<0.01) on day 3 and throughout the study. PMSF pre-treated and heat denatured WTLP failed to promote wound healing. In addition, serial biochemical analysis of the granulation tissue demonstrated 1.5-fold more (2444±100 vs. 1579±121 μg/100 mg tissue) hydroxyproline content and 5.6-fold higher catalase activity (16.7±1.3 vs. 3±0.3 units/mg) compared to controls. Further, the enhanced collagen content and matrix metalloproteinase activity correlated with wound contraction rate following WTLP and Neosporin treatment. Histological analysis on day 9 confirmed complete epithelialization, re-establishment of skin structure and accelerated wound healing following WTLP treatment. Conclusions The thermostable serine proteases of Wrightia tinctoria latex are directly involved in the wound healing process. Our findings provide a biochemical basis for the role of WTLP in the enhancement of wound healing. The study supports traditional topical application of Wrightia tinctoria latex on fresh wounds to promote accelerated healing

    Low-power body-coupled transceiver for miniaturized body area networks

    Get PDF
    As wearable devices continue to proliferate, seamlessly integrating them into wireless body-area networks (WBANs) becomes increasingly crucial. Body-coupled communication (BCC) emerges as a promising WBAN technology, utilizing the human body itself as a transmission channel. This paper presents a novel BCC transceiver designed for efficiency and miniaturization. The proposed transceiver prioritizes reliable data transmission with a convolutional encoder. It leverages a simple direct digital synthesizer (DDS) for frequency shift keying (FSK) modulation, minimizing chip area. At the receiver, a Viterbi decoder (VD) ensures accurate data recovery. This design shines in its resource efficiency. It occupies less than 1% of an Artix-7 FPGA, operates at 268.77 MHz with a mere 111 mW power consumption, and achieves a remarkable data rate of 13.78 Mbps. This translates to a hardware efficiency of 44.46 Kbps/slice, surpassing existing transceivers. Moreover, the BCC transceiver exhibits a stellar bit error rate (BER) of over 10⁻⁷ under realistic body channel conditions. Overall, this work presents a highly efficient BCC transceiver with significant improvements in chip area, power consumption, and data rate compared to existing designs. This paves the way for practical and miniaturized WBAN solutions for future wearable applications
    corecore