7,659 research outputs found
Simple parametrization for the ground-state energy of the infinite Hubbard chain incorporating Mott physics, spin-dependent phenomena and spatial inhomogeneity
Simple analytical parametrizations for the ground-state energy of the
one-dimensional repulsive Hubbard model are developed. The charge-dependence of
the energy is parametrized using exact results extracted from the Bethe-Ansatz.
The resulting parametrization is shown to be in better agreement with highly
precise data obtained from fully numerical solution of the Bethe-Ansatz
equations than previous expressions [Lima et al., Phys. Rev. Lett. 90, 146402
(2003)]. Unlike these earlier proposals, the present parametrization correctly
predicts a positive Mott gap at half filling for any U>0. The construction is
extended to spin-dependent phenomena by parametrizing the
magnetization-dependence of the ground-state energy using further exact results
and numerical benchmarking. Lastly, the parametrizations developed for the
spatially uniform model are extended by means of a simple local-density-type
approximation to spatially inhomogeneous models, e.g., in the presence of
impurities, external fields or trapping potentials. Results are shown to be in
excellent agreement with independent many-body calculations, at a fraction of
the computational cost.Comment: New Journal of Physics, accepte
The Anomalous Hall effect in re-entrant AuFe alloys and the real space Berry phase
The Hall effect has been studied in a series of AuFe samples in the
re-entrant concentration range, as well as in the spin glass range. The data
demonstrate that the degree of canting of the local spins strongly modifies the
anomalous Hall effect, in agreement with theoretical predictions associating
canting, chirality and a real space Berry phase. The canonical parametrization
of the Hall signal for magnetic conductors becomes inappropriate when local
spins are canted.Comment: 4 pages, 1 eps figur
Recommended from our members
Electronic state spectroscopy of C<sub>2</sub>Cl<sub>4</sub>
The VUV spectrum of C2Cl4 is reported in the energy range 3.8-10.8 eV (325-115 nm). Several photoabsorption features are observed for the first time, including a very weak low-lying band which is provisionally attributed to a π → π* triplet transition. Recent ab initio calculations of the molecule’s electronic transitions [Arulmozhiraja et al. J. Chem. Phys. 129 (2008) 174506] provide the basis for the present assignments below 8.5 eV. An extended ndπ series is proposed to account for several higher-energy Rydberg bands. The identification of vibrational structure, dominated by symmetric C=C and CCl2 stretching in excitations from the HOMO, largely agrees with previous spectroscopic studies. The present absolute photoabsorption cross sections cover a wider energy range than the previous measurements and are used to calculate UV photolysis lifetimes of this aeronomic molecule at altitudes between 20 and 50 km
Dinâmica do agronegócio brasileiro da melancia: produção, consumo e comercialização.
bitstream/CNPH-2009/34420/1/ct_42.pd
Experimental observation of two-dimensional fluctuation magnetization in the vicinity of T_c for low values of the magnetic field in deoxygenated YBa_2Cu_3O_{7-x}
We measured isofield magnetization curves as a function of temperature in two
single crystal of deoxygenated YBaCuO with T_c = 52 and 41.5 K. Isofield MvsT
were obtained for fields running from 0.05 to 4 kOe. The reversible region of
the magnetization curves was analyzed in terms of a scaling proposed by Prange,
but searching for the best exponent . The scaling analysis carried
out for each data sample set with =0.669, which corresponds to the
3D-xy exponent, did not produced a collapsing of curves when applied to MvsT
curves data obtained for the lowest fields. The resulting analysis for the Y123
crystal with T_c = 41.5 K, shows that lower field curves collapse over the
entire reversible region following the Prange's scaling with =1,
suggesting a two-dimensional behavior. It is shown that the same data obeying
the Prange's scaling with =1 for crystal with T_c = 41.5 K, as well
low field data for crystal with = 52 K, obey the known two-dimensional
scaling law obtained in the lowest-Landau-level approximation.Comment: 4 pages, 3 figure
The Dressing Factor and Crossing Equations
We utilize the DHM integral representation for the BES dressing factor of the
world-sheet S-matrix of the AdS_5xS^5 light-cone string theory, and the
crossing equations to fix the principal branch of the dressing factor on the
rapidity torus. The results obtained are further used, in conjunction with the
fusion procedure, to determine the bound state dressing factor of the mirror
theory. We convincingly demonstrate that the mirror bound state S-matrix found
in this way does not depend on the internal structure of a bound state solution
employed in the fusion procedure. This welcome feature is in perfect parallel
to string theory, where the corresponding bound state S-matrix has no bearing
on bound state constituent particles as well. The mirror bound state S-matrix
we found provides the final missing piece in setting up the TBA equations for
the AdS_5xS^5 mirror theory.Comment: LaTex, 48 pages, 10 figures; v2: a new section added where the
dressing factor of the mirror theory is found; v3: formula (6.12) is
corrected, a new figure is added, accepted for publication in J.Phys.
Rate coefficients for rovibrational transitions in H_2 due to collisions with He
We present quantum mechanical and quasiclassical trajectory calculations of
cross sections for rovibrational transitions in ortho- and para-H_2 induced by
collisions with He atoms. Cross sections were obtained for kinetic energies
between 10^-4 and 3 eV, and the corresponding rate coefficients were calculated
for the temperature range 100<T<4000 K. Comparisons are made with previous
calculations.Comment: 21 pages, 2 figures, AAS, eps
Nanosized superconducting constrictions
Nanowires of lead between macroscopic electrodes are produced by means of an
STM. Magnetic fields may destroy the superconductivity in the electrodes, while
the wire remains in the superconducting state. The properties of the resulting
microscopic Josephson junctions are investigated.Comment: 3 pages,3 eps figures include
- …