253 research outputs found
Diamond biocompatible coatings for medical implants
New carbon (diamond-like) nanocomposite coatings deposited from a C60 ionic beam can be used as a wear-resistant protective coating for implants. It was found that these coatings enhance resistance to тelectrochemical corrosion processes due to a shift of the material’s electrode potential to a zone of positive values. They also promote a complex of reparative, adaptative and compensatory reorganization that accelerates the healing processes in the vicinity of the implant
Stimulation of calcium phosphate crystal formation by implant surfaces with electret properties
Oxide coatings with electret properties are investigated. The possibility of stimulation of the formation of calcium phosphate sediments near the electroactive surface is discussed. The exposure of implants with such coatings to solutions imitating blood plasma showed their high efficiency of biointegration due to activation of an exchange processes in living tissues by a negative superficial charge. The revealed effect amplifies with the growth of the thickness of the anodic oxide film
Features of medical implant passivation using anodic oxide films
The passivation ability of metals from groups IV and V of the Periodic Table is considered. Anodic treatment is able to neutralize the increase of metal hardening when comminuting grains to nanometre sizes. The deposition of metal oxide film coatings on a cobalt–chromium alloy surface results in substantial passivation of its surface and prevents cobalt and chromium accumulation in bone tissues. The decrease of surface activity of titanium implants can be achieved both by cleaning the surface during vacuum annealing before oxidation and by the increase of the anodic oxide film thickness, which limits mass and charge transfer through the implant surface. Recommended titanium implant treatment regimens are vacuum annealing at 650 °C and anodic oxidation to attain an oxide thickness less or equal to 300 nm
Properties of magnetron hydroxyapatite coatings deposited on oxidized substrates
Hydroxyapatite (HA) coating were formed on oxidized niobium surfaces by the highfrequency magnetron sputtering method using hydroxyapatite and tricalcium phosphate targets. The structure, substructure and mechanical properties of the Nb–Nb2O5–HA system were investigated by X-ray diffraction, atomic force microscopy and nanoindentation and the stress state was assessed. The synthesized hydroxyapatite film had the following characteristics: thermal expansion coefficient 10–5 K–1; modulus of elasticity 120 GPa; adhesive strength not less than 0.45 kg/mm2; density 2900 kg/m3. The stress magnitude in the metal oxide substrate was from 11 to 14 MPa after hydroxyapatite film deposition
Structural and crystal-chemical characteristics of the apatite deposits from human aortic walls
Thermal behavior of biological apatite is the object of several studies. Crystal size, carbonate content, phase composition, and other parameters change during annealing up to 900 °C in biological minerals with apatite structure. The way these parameters change reflects the specific properties of the initial bioapatite. This work presents data on thermal transformations of pathological bioapatite from the human cardiovascular system, namely aortic wall deposits. Some minor elements, foreign to calcium hydroxyapatite (e.g., Na and Mg), can be both incorporated in the apatite structure and localized in the surface layers of crystals, modifying functions of the mineral. A new approach was proposed to determine the predominant location of minor elements, such as Mg, Na, and K, in the mineral of pathological deposits. Mg and Na in pathological apatite can be in both structurally bound (substituting calcium in lattice) and labile (localized on the crystal surface) states, while K is not able to join the apatite structure in significant amount or be chemically bound to it. This approach, based on atomic spectrometry, can be used effectively in combination with a set of traditional techniques, such as like EDS, IRS, and XRD
Battle of Kursk — a Look 80 Years Later
The article analyzes the most important details and factors of the victory of the Soviet troops in the Battle of Kursk, which became a key battle during the Great Patriotic War. As a source base, the authors actively use various data not only from Russian, but also from German historiography, including memoiristics. Some observations and conclusions are very relevant in connection with modern international relations
В поисках механизмов социальных изменений в современной Украине
Book Review: Savelyev Y. Multidimensional modernity: social inclusion in assessment of social development: monograph / Yuriy Savelyev. – K. : VPC "The University of Kyiv", 2017. – 447 p. [in Ukrainian]Рецензия на книгу: Савельєв Ю. Б. Багатовимірна сучасність: соціальне включення в оцінці суспільного розвитку : монографія / Ю. Б. Савельєв. – К. : ВПЦ "Київський університет", 2017. – 447 с
Zinc oxide-nickel cermet selective coatings obtained by sequential electrodeposition
The investigation of pulse electrodepositing modes influence on crystal structure, morphology and optical properties of ZnO has revealed the conditions in which quasi-one-dimensional (1D) ZnO nanorod arrays are formed as separate nanorods. Due to a sufficiently high resistance of zinc oxide, the electrodeposition of nickel on the fluorine doped tin oxide (FTO)/ZnO surfaces carried out in space between the ZnO nanorods. An incomplete filling of the gaps between nanorods by the nickel nanoparticles through subsequent Ni electrodeposition ensured the creation of ZnO–Ni graded cermets. The cermets, in which electrochemical filling of the spaces between ZnO nanorods by Ni, was performed in the pulse mode. It provided higher absorption of visible and near IR light. It was shown that the manufactured ZnO–Ni graded cermets have high light absorption combined with comparatively low thermal losses, so these cermets are promising cheap and affordable selective coatings for solar heat collectors
Anti-corrosion ceramic coatings on the surface of Nd-Fe-B repelling magnets
The results of vacuum-arc deposition of thin ZrO₂coatings to protect the surface of Nd-Fe-B permanent magnets used as repelling devices in orthodontics are presented. The structure, phase composition and mechanical properties of zirconium dioxide films have been investigated by means of SEM, XRD, EDX, XRF and nanoindentation method. It was revealed the formation of polycrystalline ZrO₂ films of monoclinic modification with average grain size 25 nm. The influence of the ZrO₂ coating in terms of its barrier properties for corrosion in quasi-physiological 0.9 NaCl solution has been studied. Electrochemical measurements indicated good barrier properties of the coating on specimens in the physiological solution environment
- …