3,637 research outputs found
Applications of hidden symmetries to black hole physics
This work is a brief review of applications of hidden symmetries to black
hole physics. Symmetry is one of the most important concepts of the science. In
physics and mathematics the symmetry allows one to simplify a problem, and
often to make it solvable. According to the Noether theorem symmetries are
responsible for conservation laws. Besides evident (explicit) spacetime
symmetries, responsible for conservation of energy, momentum, and angular
momentum of a system, there also exist what is called hidden symmetries, which
are connected with higher order in momentum integrals of motion. A remarkable
fact is that black holes in four and higher dimensions always possess a set
(`tower') of explicit and hidden symmetries which make the equations of motion
of particles and light completely integrable. The paper gives a general review
of the recently obtained results. The main focus is on understanding why at all
black holes have something (symmetry) to hide.Comment: This is an extended version of the talks at NEB-14 conference
(June,Ioannina,Greece) and JGRG20 meeting (September, Kyoto, Japan
Gauge field theory for Poincar\'{e}-Weyl group
On the basis of the general principles of a gauge field theory the gauge
theory for the Poincar\'{e}-Weyl group is constructed. It is shown that tetrads
are not true gauge fields, but represent functions from true gauge fields:
Lorentzian, translational and dilatational ones. The equations of gauge fields
which sources are an energy-momentum tensor, orbital and spin momemta, and also
a dilatational current of an external field are obtained. A new direct
interaction of the Lorentzian gauge field with the orbital momentum of an
external field appears, which describes some new effects. Geometrical
interpretation of the theory is developed and it is shown that as a result of
localization of the Poincar\'{e}-Weyl group spacetime becomes a Weyl-Cartan
space. Also the geometrical interpretation of a dilaton field as a component of
the metric tensor of a tangent space in Weyl-Cartan geometry is proposed.Comment: LaTex, 27 pages, no figure
Thorny Spheres and Black Holes with Strings
We consider thorny spheres, that is 2-dimensional compact surfaces which are
everywhere locally isometric to a round sphere except for a finite number
of isolated points where they have conical singularities. We use thorny spheres
to generate, from a spherically symmetric solution of the Einstein equations,
new solutions which describe spacetimes pierced by an arbitrary number of
infinitely thin cosmic strings radially directed. Each string produces an angle
deficit proportional to its tension, while the metric outside the strings is a
locally spherically symmetric solution. We prove that there can be arbitrary
configurations of strings provided that the directions of the strings obey a
certain equilibrium condition. In general this equilibrium condition can be
written as a force-balance equation for string forces defined in a flat 3-space
in which the thorny sphere is isometrically embedded, or as a constraint on the
product of holonomies around strings in an alternative 3-space that is flat
except for the strings. In the case of small string tensions, the constraint
equation has the form of a linear relation between unit vectors directed along
the string axes.Comment: 37 pages, 11 figure
Accretion of Ghost Condensate by Black Holes
The intent of this letter is to point out that the accretion of a ghost
condensate by black holes could be extremely efficient. We analyze steady-state
spherically symmetric flows of the ghost fluid in the gravitational field of a
Schwarzschild black hole and calculate the accretion rate. Unlike minimally
coupled scalar field or quintessence, the accretion rate is set not by the
cosmological energy density of the field, but by the energy scale of the ghost
condensate theory. If hydrodynamical flow is established, it could be as high
as tenth of a solar mass per second for 10MeV-scale ghost condensate accreting
onto a stellar-sized black hole, which puts serious constraints on the
parameters of the ghost condensate model.Comment: 5 pages, 3 figures, REVTeX 4.0; discussion expande
- …