69 research outputs found
TOXIC LIVER DAMAGE IN ACUTE PHASE OF ETHANOL INTOXICATION AND ITS EXPERIMENTAL CORRECTION WITH CHELATE ZINC COMPOUND
It was established, that ethanol in the dose of 12 g/kg in experimental animals (white non-inbred male rats) had. expressed damaging effect on the liver, that is shown in statistically significant increase of activity of hepatic enzymes (alanine aminotransferase, alkaline phosphatase), hypoglycemia, development of albuminous and. hydropic degeneration. It is proved, that application of new chelate zinc (2,8,9-trigidrotsinkatrane) in experimental correction of acute ethanol poisoning promotes reduction of metabolic and morphological derangements
Acute ethanol poisoning and its complex damaging effect on functionality of the liver
It is established, that ethanol in the dose of 12 g/kg at experimental animals (white noninbred male rats) has the pronounced damaging effect on the liver, which is manifested in the dynamics of the aggregate biochemical, histological and histochemical indicators
Correction of dyscrasia of the organism of rats in the conditions of acute ethanol poisoning by the introduction of chelate zinc compound. Morphofunctional characteristics of protective action of the 2,8,9-trihydrozincatrane
It is experimentally proved that the new zinc chelate compound 2,8,9-trihydrozinkatrane has a protective effect on the organism of experimental animals contributing to the improvement of essential metabolic processes. Single intragastric introduction of 2,8,9-trihydrozincatrane in protective dose of 4 mg/kg is an effective method of limitation of development of acute alcoholic poisoning in experimental rats that promotes an increase of tolerance of animals' organisms to multiple negative effects of ethanol and its metabolites
OXIDATIVE STRESS AS A PATHOGENETIC LINK OF ACUTE ETHANOL POISONING AND ITS CORRECTION WITH CHELATE ZINC COMPOUNDS
The data on the expressed toxic effect of ethanol in dose DL50 (12 g/kg) on experimental rats were received. The toxic effect was expressed in significant stimulation of processes of lipid peroxidation against the background of antioxidant system suppression. While evaluating the results of statistic analysis it was proved, that new chelate zinc (2,8,9-trihydrozincatrane) in the protective dose of 4 mg/kg under conditions of the acute ethanol poisoning reduces the severity of oxidative stress and normalizes indicators of antioxidant system
P-selectin mobility undergoes a sol-gel transition as it diffuses from exocytosis sites into the cell membrane
In response to vascular damage, P-selectin molecules are secreted onto the surface of cells that line our blood vessels. They then serve as mechanical anchors to capture leucocytes from the blood stream. Here, we track individual P-selectin molecules released at the surface of live endothelial cells following stimulated secretion. We find P-selectin initially shows fast, unrestricted diffusion but within a few minutes, movement becomes increasingly restricted and ~50% of the molecules become completely immobile; a process similar to a sol-gel transition. We find removal of the extracellular C-type lectin domain (ΞCTLD) and/or intracellular cytoplasmic tail domain (ΞCT) has additive effects on diffusive motion while disruption of the adapter complex, AP2, or removal of cell-surface heparan sulphate restores mobility of full-length P-selectin close to that of ΞCT and ΞCTLD respectively. We have found P-selectin spreads rapidly from sites of exocytosis and evenly decorates the cell surface, but then becomes less mobile and better-suited to its mechanical anchoring function
Π£ΠΠ Π£ΠΠΠΠΠΠ Π―ΠΠΠΠΠ«Π Π‘ΠΠΠ Π ΠΠΠΠΠΠ‘Π’Π ΠΠΠΠ GESISN Π ΠΠΠΠΠΠ‘ΠΠΠΠΠ«Π₯ ΠΠΠ ΠΠΠΠΠ§ΠΠ‘ΠΠΠ₯ Π‘Π’Π Π£ΠΠ’Π£Π ΠΠ₯
This work deals with elastically strained GeSiSn films and GeSiSn islands. Kinetic diagram of GeSiSn growth at different lattice mismatches between GeSiSn and Si has been established. Multilayer periodic structures with pseudomorphic GeSiSn layers and GeSiSn island array have been obtained. The density of the islands in the GeSiSn layer reaches 1.8 β
1012 cmβ2 at an average island size of 4 nm. Analysis of the rocking curves showed that the structures contain smooth heterointerfaces, and strong changes of composition and thickness from period to period have not been found. Photoluminescence has been demonstrated and calculation of band diagram in the model solid theory approach has been carried out. Luminescence for the sample with pseudomorphic Ge0.315Si0.65Sn0.035 layers in narrow range of 0.71β0.82 eV is observed with the maximum intensity near 0.78 eV corresponding to a 1.59 Β΅m wavelength. Based on a band diagram calculation for Si/ Ge0.315Si0.65Sn0.035/Si heterocomposition, one can conclud that luminescence with a photon energy of 0.78 eV corresponds to interband transitions between the Xβvalley in the Si and the heavy hole subband in the Ge0.315Si0.65Sn0.035 layer.Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π° ΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠ°Ρ Π΄ΠΈΠ°Π³ΡΠ°ΠΌΠΌΠ° ΠΌΠΎΡΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ ΠΏΠ»Π΅Π½ΠΎΠΊ GeSiSn ΠΏΡΠΈ Π½Π΅ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΡΠ΅ΡΠ΅ΡΠΊΠΈ ΠΌΠ΅ΠΆΠ΄Ρ GeSiSn ΠΈ Si ΠΎΡ 3 Π΄ΠΎ 5 %. ΠΠ° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΏΠΎΠ΄Π±ΠΎΡΠ° ΡΠΎΠ»ΡΠΈΠ½Ρ ΠΏΠ»Π΅Π½ΠΊΠΈ GeSiSn Π²ΡΡΠ°ΡΠ΅Π½Ρ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»ΠΎΠΉΠ½ΡΠ΅ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΡΡΠΊΡΡΡΡ Ρ ΠΏΡΠ΅Π²Π΄ΠΎΠΌΠΎΡΡΠ½ΡΠΌΠΈ ΡΠ»ΠΎΡΠΌΠΈ ΠΈ ΡΠ»ΠΎΡΠΌΠΈ, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΠΌΠΈ ΠΌΠ°ΡΡΠΈΠ² ΠΎΡΡΡΠΎΠ²ΠΊΠΎΠ² GeSiSn Ρ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΡΡ Π΄ΠΎ 1,8 β
1012 ΡΠΌβ2 ΠΈ ΡΡΠ΅Π΄Π½ΠΈΠΌ ΡΠ°Π·ΠΌΠ΅ΡΠΎΠΌ 4 Π½ΠΌ. ΠΡΠΎΠ²Π΅Π΄Π΅Π½ Π°Π½Π°Π»ΠΈΠ· ΠΊΡΠΈΠ²ΡΡ
Π΄ΠΈΡΡΠ°ΠΊΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΎΡΡΠ°ΠΆΠ΅Π½ΠΈΡ Π΄Π»Ρ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»ΠΎΠΉΠ½ΡΡ
ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΡΡΠΊΡΡΡ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ Π½Π°Π»ΠΈΡΠΈΠ΅ Π³Π»Π°Π΄ΠΊΠΈΡ
Π³Π΅ΡΠ΅ΡΠΎΠ³ΡΠ°Π½ΠΈΡ, ΠΏΡΠ΅Π²Π΄ΠΎΠΌΠΎΡΡΠ½ΠΎΠ΅ ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ ΠΏΠ»Π΅Π½ΠΎΠΊ GeSiSn ΠΈ ΠΎΡΡΡΡΡΡΠ²ΠΈΠ΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ ΡΠΎΡΡΠ°Π²Π°, Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠΎΠ»ΡΠΈΠ½Ρ ΠΎΡ ΠΏΠ΅ΡΠΈΠΎΠ΄Π° ΠΊ ΠΏΠ΅ΡΠΈΠΎΠ΄Ρ. ΠΠΎΠ»ΡΡΠ΅Π½Ρ ΡΠΏΠ΅ΠΊΡΡΡ ΡΠΎΡΠΎΠ»ΡΠΌΠΈΠ½Π΅ΡΡΠ΅Π½ΡΠΈΠΈ Π΄Π»Ρ ΡΡΡΡΠΊΡΡΡΡ Ρ ΠΏΡΠ΅Π²Π΄ΠΎΠΌΠΎΡΡΠ½ΡΠΌΠΈ ΡΠ»ΠΎΡΠΌΠΈ Ge0,315Si0,65Sn0,035 Ρ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠΎΠΌ ΠΈΠ½ΡΠ΅Π½ΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΠΎΡΠΎΠ»ΡΠΌΠΈΠ½Π΅ΡΡΠ΅Π½ΡΠΈΠΈ Π²Π±Π»ΠΈΠ·ΠΈ 0,78 ΡΠ, ΡΡΠΎ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ Π΄Π»ΠΈΠ½Π΅ Π²ΠΎΠ»Π½Ρ 1,59 ΠΌΠΊΠΌ. ΠΡΠΎΠ²Π΅Π΄Π΅Π½ ΡΠ°ΡΡΠ΅Ρ Π·ΠΎΠ½Π½ΠΎΠΉ Π΄ΠΈΠ°Π³ΡΠ°ΠΌΠΌΡ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Π° model solid theory. ΠΡΡ
ΠΎΠ΄Ρ ΠΈΠ· ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΡΠ°ΡΡΠ΅ΡΠ° Π·ΠΎΠ½Π½ΠΎΠΉ Π΄ΠΈΠ°Π³ΡΠ°ΠΌΠΌΡ, ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½Π½ΡΠΉ ΠΏΠΈΠΊ Π»ΡΠΌΠΈΠ½Π΅ΡΡΠ΅Π½ΡΠΈΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ ΠΌΠ΅ΠΆΠ·ΠΎΠ½Π½ΡΠΌ ΠΏΠ΅ΡΠ΅Ρ
ΠΎΠ΄Π°ΠΌ ΠΌΠ΅ΠΆΠ΄Ρ XβΠ΄ΠΎΠ»ΠΈΠ½ΠΎΠΉ Π² Si ΠΈΠ»ΠΈ ΠΌΠ΅ΠΆΠ΄Ρ β4βΠ΄ΠΎΠ»ΠΈΠ½ΠΎΠΉ Π² Ge0,315Si0,65Sn0,035 ΠΈ ΠΏΠΎΠ΄Π·ΠΎΠ½ΠΎΠΉ ΡΡΠΆΠ΅Π»ΡΡ
Π΄ΡΡΠΎΠΊ Π² ΡΠ»ΠΎΠ΅ Ge0,315Si0,65Sn0,035. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ Π΄Π΅ΠΌΠΎΠ½ΡΡΡΠΈΡΡΡΡ Π±Π΅Π·Π΄ΠΈΡΠ»ΠΎΠΊΠ°ΡΠΈΠΎΠ½Π½ΡΠ΅ ΡΡΡΡΠΊΡΡΡΡ Ρ ΡΠΏΡΡΠ³ΠΎΠ½Π°ΠΏΡΡΠΆΠ΅Π½Π½ΡΠΌΠΈ ΠΏΡΠ΅Π²Π΄ΠΎΠΌΠΎΡΡΠ½ΡΠΌΠΈ ΡΠ»ΠΎΡΠΌΠΈ ΠΈ ΡΠ»ΠΎΡΠΌΠΈ, Π²ΠΊΠ»ΡΡΠ°ΡΡΠΈΠΌΠΈ ΠΌΠ°ΡΡΠΈΠ² ΠΎΡΡΡΠΎΠ²ΠΊΠΎΠ² Π²ΡΡΠΎΠΊΠΎΠΉ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΠΈ. ΠΠ°Π»ΡΠ½Π΅ΠΉΡΠ΅Π΅ ΠΈΠ·ΡΡΠ΅Π½ΠΈΠ΅ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»ΠΎΠΉΠ½ΡΡ
ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΡΡΠΊΡΡΡ Π±ΡΠ΄Π΅Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΎ Π½Π° ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠ΅ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ Sn ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ²ΠΎΠΉΡΡΠ² ΡΡΡΡΠΊΡΡΡ Ρ ΠΎΡΡΡΠΎΠ²ΠΊΠ°ΠΌΠΈ ΠΈ Π±Π΅Π· ΠΎΡΡΡΠΎΠ²ΠΊΠΎΠ²
ΠΠ΅ΡΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΊΠΎΠ½ΡΠ»ΠΈΠΊΡΠΎΠ² Π² ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ
The article raises the problem of developing methods for studying conflicts
in the education system. The definition of conflict is given as a process that actualises
violations by the subjects of interaction of established norms, rules, laws, requirements
of a particular social environment. It is emphasised that today there are two main
methodological approaches to the study of conflicts: activity-oriented and personalityoriented.
The activity-oriented paradigm considers conflicts from the point of view of
activity and development of the subjects of interaction and social environment. The
personality-oriented approach focuses on the importance of personal characteristics of the
interacting parties to resolve a conflict situation. The authors propose a comprehensive
approach based on the symbiosis of personality-oriented and activity-oriented paradigms,
which allows to take into account the main personal factors of subjects in the process of
deployment and resolution of conflicts at each stage of a conflict situation: characterological
peculiarities, self-esteem and intelligence, as well as behaviour strategies. An empirical
pilot study was conducted among students of Siberian Federal University in order to
determine leading personality features of an individual, which occupy the central place
in a conflict, regardless of its stage and determine their relationship with the level of
proneness to conflicts of a person.
The data obtained allowed us to come to preliminary conclusions that a low level of
proneness to conflicts is associated with such qualities as high intelligence, ability to
think outside the box, emotional stability, self-confidence and awareness of oneβs own
capabilities. A high level of proneness to conflicts is due to the studentβs inability or
unwillingness to understand and accept the individuality of other people, inability to
forgive others for their mistakes, low intelligence, emotional instability and anxiety.
The revealed relationships confirmed the effectiveness of using an integrated approach
to the study of conflicts, as well as the theoretical assumption of the mutual influence
of individual psychological characteristics and the level of proneness to conflicts of a
person. The results of the study will allow us to investigate the mechanisms of conflict
behaviour of learners, taking into account their individual psychological characteristics
at each stage of the development of a conflict situation, and therefore manage conflicts in
the education systemΠ ΡΡΠ°ΡΡΠ΅ ΠΏΠΎΠ΄Π½ΠΈΠΌΠ°Π΅ΡΡΡ ΠΏΡΠΎΠ±Π»Π΅ΠΌΠ° ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΠΈ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΊΠΎΠ½ΡΠ»ΠΈΠΊΡΠΎΠ² Π² ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ. ΠΠ°Π΅ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΊΠΎΠ½ΡΠ»ΠΈΠΊΡΠ°
ΠΊΠ°ΠΊ ΠΏΡΠΎΡΠ΅ΡΡΠ°, ΠΊΠΎΡΠΎΡΡΠΉ Π°ΠΊΡΡΠ°Π»ΠΈΠ·ΠΈΡΡΠ΅Ρ Π½Π°ΡΡΡΠ΅Π½ΠΈΡ ΡΡΠ±ΡΠ΅ΠΊΡΠ°ΠΌΠΈ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ
ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π½ΡΡ
Π½ΠΎΡΠΌ, ΠΏΡΠ°Π²ΠΈΠ», Π·Π°ΠΊΠΎΠ½ΠΎΠ², ΡΡΠ΅Π±ΠΎΠ²Π°Π½ΠΈΠΉ ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½ΠΎΠΉ ΡΠΎΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ
ΡΡΠ΅Π΄Ρ. ΠΠΎΠ΄ΡΠ΅ΡΠΊΠΈΠ²Π°Π΅ΡΡΡ, ΡΡΠΎ Π½Π° ΡΠ΅Π³ΠΎΠ΄Π½ΡΡΠ½ΠΈΠΉ Π΄Π΅Π½Ρ ΡΡΡΠ΅ΡΡΠ²ΡΡΡ Π΄Π²Π° ΠΎΡΠ½ΠΎΠ²Π½ΡΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Π° ΠΊ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΊΠΎΠ½ΡΠ»ΠΈΠΊΡΠΎΠ²: Π΄Π΅ΡΡΠ΅Π»ΡΠ½ΠΎΡΡΠ½ΡΠΉ ΠΈ
Π»ΠΈΡΠ½ΠΎΡΡΠ½ΠΎ-ΠΎΡΠΈΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠΉ. ΠΠ΅ΡΡΠ΅Π»ΡΠ½ΠΎΡΡΠ½Π°Ρ ΠΏΠ°ΡΠ°Π΄ΠΈΠ³ΠΌΠ° ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅Ρ ΠΊΠΎΠ½ΡΠ»ΠΈΠΊΡ
Ρ ΡΠΎΡΠΊΠΈ Π·ΡΠ΅Π½ΠΈΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΈ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΡΡΠ±ΡΠ΅ΠΊΡΠΎΠ² Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ ΠΈ ΡΠΎΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΡΠ΅Π΄Ρ.
ΠΠΈΡΠ½ΠΎΡΡΠ½ΠΎ-ΠΎΡΠΈΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠΉ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄ Π΄Π΅Π»Π°Π΅Ρ Π°ΠΊΡΠ΅Π½Ρ Π½Π° Π·Π½Π°ΡΠΈΠΌΠΎΡΡΠΈ Π»ΠΈΡΠ½ΠΎΡΡΠ½ΡΡ
ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠ΅ΠΉ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΡΡΡΠΈΡ
ΡΡΠΎΡΠΎΠ½ Π΄Π»Ρ ΡΠ°Π·ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΊΠΎΠ½ΡΠ»ΠΈΠΊΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ°ΡΠΈΠΈ.
ΠΠ²ΡΠΎΡΡ ΠΏΡΠ΅Π΄Π»Π°Π³Π°ΡΡ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΡΠΉ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄, ΠΎΡΠ½ΠΎΠ²Π°Π½Π½ΡΠΉ Π½Π° ΡΠΈΠΌΠ±ΠΈΠΎΠ·Π΅ Π»ΠΈΡΠ½ΠΎΡΡΠ½ΠΎ-
ΠΎΡΠΈΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΈ Π΄Π΅ΡΡΠ΅Π»ΡΠ½ΠΎΡΡΠ½ΠΎΠΉ ΠΏΠ°ΡΠ°Π΄ΠΈΠ³ΠΌΡ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡΠΈΠΉ ΡΡΠΈΡΡΠ²Π°ΡΡ Π²
ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΡΠ°Π·Π²Π΅ΡΡΡΠ²Π°Π½ΠΈΡ ΠΈ ΡΠ°Π·ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΊΠΎΠ½ΡΠ»ΠΈΠΊΡΠΎΠ² ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ Π»ΠΈΡΠ½ΠΎΡΡΠ½ΡΠ΅ ΡΠ°ΠΊΡΠΎΡΡ
ΡΡΠ±ΡΠ΅ΠΊΡΠΎΠ² Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΈΠ· ΡΡΠ°ΠΏΠΎΠ² ΠΊΠΎΠ½ΡΠ»ΠΈΠΊΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ°ΡΠΈΠΈ: Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠ΅
ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ, ΡΠ°ΠΌΠΎΠΎΡΠ΅Π½ΠΊΡ ΠΈ ΠΈΠ½ΡΠ΅Π»Π»Π΅ΠΊΡ, Π° ΡΠ°ΠΊΠΆΠ΅ ΡΡΡΠ°ΡΠ΅Π³ΠΈΠΈ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ. ΠΡΠΎΠ²Π΅Π΄Π΅Π½ΠΎ
ΠΏΠΈΠ»ΠΎΡΠ°ΠΆΠ½ΠΎΠ΅ ΡΠΌΠΏΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΠ΅Π΄ΠΈ ΡΡΠ°ΡΠΈΡ
ΡΡ Π‘ΠΈΠ±ΠΈΡΡΠΊΠΎΠ³ΠΎ ΡΠ΅Π΄Π΅ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ
ΡΠ½ΠΈΠ²Π΅ΡΡΠΈΡΠ΅ΡΠ° Ρ ΡΠ΅Π»ΡΡ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΈ Π²Π΅Π΄ΡΡΠΈΡ
Π»ΠΈΡΠ½ΠΎΡΡΠ½ΡΡ
Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄Π°,
ΠΊΠΎΡΠΎΡΡΠ΅ Π²ΡΡΡΡΠΏΠ°ΡΡ ΡΠ΅Π½ΡΡΠ°Π»ΡΠ½ΡΠΌ Π·Π²Π΅Π½ΠΎΠΌ ΠΊΠΎΠ½ΡΠ»ΠΈΠΊΡΠ° Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎ ΠΎΡ Π΅Π³ΠΎ ΡΡΠ°ΠΏΠ°, ΠΈ
ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΈΡ
ΡΠ²ΡΠ·ΠΈ Ρ ΡΡΠΎΠ²Π½Π΅ΠΌ ΠΊΠΎΠ½ΡΠ»ΠΈΠΊΡΠ½ΠΎΡΡΠΈ Π»ΠΈΡΠ½ΠΎΡΡΠΈ.
ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΈ ΡΠ΄Π΅Π»Π°ΡΡ ΠΏΡΠ΅Π΄Π²Π°ΡΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ Π²ΡΠ²ΠΎΠ΄Ρ ΠΎ ΡΠΎΠΌ, ΡΡΠΎ Π½ΠΈΠ·ΠΊΠΈΠΉ
ΡΡΠΎΠ²Π΅Π½Ρ ΠΊΠΎΠ½ΡΠ»ΠΈΠΊΡΠ½ΠΎΡΡΠΈ ΡΠ²ΡΠ·Π°Π½ Ρ ΡΠ°ΠΊΠΈΠΌΠΈ ΠΊΠ°ΡΠ΅ΡΡΠ²Π°ΠΌΠΈ, ΠΊΠ°ΠΊ: Π²ΡΡΠΎΠΊΠΈΠΉ ΠΈΠ½ΡΠ΅Π»Π»Π΅ΠΊΡ,
ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΡ ΠΊ Π½Π΅ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠΌΡ ΠΌΡΡΠ»Π΅Π½ΠΈΡ, ΡΠΌΠΎΡΠΈΠΎΠ½Π°Π»ΡΠ½Π°Ρ ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΡΡΡ,
ΡΠ²Π΅ΡΠ΅Π½Π½ΠΎΡΡΡ Π² ΡΠ΅Π±Π΅ ΠΈ ΡΠ²ΠΎΠΈΡ
Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡΡ
. ΠΡΡΠΎΠΊΠΈΠΉ ΡΡΠΎΠ²Π΅Π½Ρ ΠΊΠΎΠ½ΡΠ»ΠΈΠΊΡΠ½ΠΎΡΡΠΈ
ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½ Π½Π΅ΡΠΌΠ΅Π½ΠΈΠ΅ΠΌ ΠΈΠ»ΠΈ Π½Π΅ΠΆΠ΅Π»Π°Π½ΠΈΠ΅ΠΌ ΠΎΠ±ΡΡΠ°ΡΡΠ΅Π³ΠΎΡΡ ΠΏΠΎΠ½ΠΈΠΌΠ°ΡΡ ΠΈ ΠΏΡΠΈΠ½ΠΈΠΌΠ°ΡΡ
ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡΠ°Π»ΡΠ½ΠΎΡΡΡ Π΄ΡΡΠ³ΠΈΡ
Π»ΡΠ΄Π΅ΠΉ, Π½Π΅ΡΠΌΠ΅Π½ΠΈΠ΅ΠΌ ΠΏΡΠΎΡΠ°ΡΡ Π΄ΡΡΠ³ΠΎΠΌΡ Π΅Π³ΠΎ ΠΎΡΠΈΠ±ΠΊΠΈ, Π½ΠΈΠ·ΠΊΠΈΠΌ
ΠΈΠ½ΡΠ΅Π»Π»Π΅ΠΊΡΠΎΠΌ, ΡΠΌΠΎΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠΉ Π½Π΅ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΡΡΡΡ, ΡΡΠ΅Π²ΠΎΠΆΠ½ΠΎΡΡΡΡ. ΠΡΡΠ²Π»Π΅Π½Π½ΡΠ΅
Π²Π·Π°ΠΈΠΌΠΎΡΠ²ΡΠ·ΠΈ ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠ΄ΠΈΠ»ΠΈ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Π° ΠΊ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΊΠΎΠ½ΡΠ»ΠΈΠΊΡΠΎΠ², Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΏΡΠ΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ²Π»ΠΈΡΠ½ΠΈΠΈ
ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡΠ°Π»ΡΠ½ΠΎ-ΠΏΡΠΈΡ
ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠ΅ΠΉ ΠΈ ΡΡΠΎΠ²Π½Ρ ΠΊΠΎΠ½ΡΠ»ΠΈΠΊΡΠ½ΠΎΡΡΠΈ Π»ΠΈΡΠ½ΠΎΡΡΠΈ.
Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡ ΠΈΠ·ΡΡΠ°ΡΡ ΠΌΠ΅Ρ
Π°Π½ΠΈΠ·ΠΌΡ ΠΊΠΎΠ½ΡΠ»ΠΈΠΊΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ
ΡΡΠ±ΡΠ΅ΠΊΡΠΎΠ² ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ, ΡΡΠΈΡΡΠ²Π°Ρ ΠΈΡ
ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡΠ°Π»ΡΠ½ΠΎ-ΠΏΡΠΈΡ
ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ
Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΡΡΠ°ΠΏΠ΅ ΡΠ°Π·Π²Π΅ΡΡΡΠ²Π°Π½ΠΈΡ ΠΊΠΎΠ½ΡΠ»ΠΈΠΊΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ°ΡΠΈΠΈ, Π° Π·Π½Π°ΡΠΈΡ, ΡΠΏΡΠ°Π²Π»ΡΡΡ
ΠΊΠΎΠ½ΡΠ»ΠΈΠΊΡΠ°ΠΌΠΈ Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ
ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌ
Acute toxicity of pyridoxine hydrochloride-containing and noncontaining antituberculosis drugs (an experimental study)
This experimental study established DL50 (mg/kg), the degree of toxicity, and a hazard class for 17 antituberculosis drugs (OAO Β«FarmasintezΒ», Irkutsk). Experiments were performed on experimental biological models: albino outbred rats (n = 3 400) and mice (n = 3 400). The incorporation of pyridoxine hydrochloride into combined antituberculosis drugs was found to considerably decrease their toxicity
- β¦