11 research outputs found

    PBr3 adsorption on a chlorinated Si(100) surface with mono- and bivacancies

    Full text link
    For the most precise incorporation of single impurities in silicon, which is utilized to create quantum devices, a monolayer of adatoms on the Si(100) surface and a dopant-containing molecule are used. Here we studied the interaction of a phosphorus tribromide with a chlorine monolayer with mono- and bivacancies in a scanning tunneling microscope (STM) at 77 K. The combination of different halogens in the molecule and the adsorbate layer enabled unambiguous identification of the structures after PBr3 dissociation on Si(100)-Cl. A Cl monolayer was exposed to PBr3 in the STM chamber, which allows us to compare the same surface areas before and after PBr3 adsorption. As a result of this comparison, we detected small changes in the chlorine layer and unraveled the molecular fragments filling mono- and bivacancies. Using density functional theory, we found that the phosphorus atom occupies a bridge position after dissociation of the PBr3 molecule, which primarily bonds to silicon in Cl bivacancies. These findings provide insight into the interaction of a dopant containing molecule with an adsorbate monolayer on Si(100) and can be applied to improve the process of single impurities incorporation into silicon

    Structure and peculiarities of the (8 x n)-type Si(001) surface prepared in a molecular-beam epitaxy chamber: a scanning tunneling microscopy study

    Full text link
    A clean Si(001) surface thermally purified in an ultrahigh vacuum molecular-beam epitaxy chamber has been investigated by means of scanning tunneling microscopy. The morphological peculiarities of the Si(001) surface have been explored in detail. The classification of the surface structure elements has been carried out, the dimensions of the elements have been measured, and the relative heights of the surface relief have been determined. A reconstruction of the Si(001) surface prepared in the molecular-beam epitaxy chamber has been found to be (8 x n). A model of the Si(001)-(8 x n) surface structure is proposed.Comment: 4 pages, 8 figures. Complete versio

    STM and RHEED study of the Si(001)-c(8x8) surface

    Get PDF
    The Si(001) surface deoxidized by short annealing at T~925C in the ultrahigh vacuum molecular beam epitaxy chamber has been in situ investigated by high resolution scanning tunnelling microscopy (STM) and reflected high energy electron diffraction (RHEED). RHEED patterns corresponding to (2x1) and (4x4) structures were observed during sample treatment. The (4x4) reconstruction arose at T<600C after annealing. The reconstruction was observed to be reversible: the (4x4) structure turned into the (2x1) one at T>600C, the (4x4) structure appeared again at recurring cooling. The c(8x8) reconstruction was revealed by STM at room temperature on the same samples. A fraction of the surface area covered by the c(8x8) structure decreased as the sample cooling rate was reduced. The (2x1) structure was observed on the surface free of the c(8x8) one. The c(8x8) structure has been evidenced to manifest itself as the (4x4) one in the RHEED patterns. A model of the c(8x8) structure formation has been built on the basis of the STM data. Origin of the high-order structure on the Si(001) surface and its connection with the epinucleation phenomenon are discussed.Comment: 26 pages, 12 figure
    corecore