768 research outputs found

    On insertion-deletion systems over relational words

    Full text link
    We introduce a new notion of a relational word as a finite totally ordered set of positions endowed with three binary relations that describe which positions are labeled by equal data, by unequal data and those having an undefined relation between their labels. We define the operations of insertion and deletion on relational words generalizing corresponding operations on strings. We prove that the transitive and reflexive closure of these operations has a decidable membership problem for the case of short insertion-deletion rules (of size two/three and three/two). At the same time, we show that in the general case such systems can produce a coding of any recursively enumerable language leading to undecidabilty of reachability questions.Comment: 24 pages, 8 figure

    Typical-Medium Theory of Mott-Anderson Localization

    Full text link
    The Mott and the Anderson routes to localization have long been recognized as the two basic processes that can drive the metal-insulator transition (MIT). Theories separately describing each of these mechanisms were discussed long ago, but an accepted approach that can include both has remained elusive. The lack of any obvious static symmetry distinguishing the metal from the insulator poses another fundamental problem, since an appropriate static order parameter cannot be easily found. More recent work, however, has revisited the original arguments of Anderson and Mott, which stressed that the key diference between the metal end the insulator lies in the dynamics of the electron. This physical picture has suggested that the "typical" (geometrically averaged) escape rate from a given lattice site should be regarded as the proper dynamical order parameter for the MIT, one that can naturally describe both the Anderson and the Mott mechanism for localization. This article provides an overview of the recent results obtained from the corresponding Typical-Medium Theory, which provided new insight into the the two-fluid character of the Mott-Anderson transition.Comment: to be published in "Fifty Years of Anderson localization", edited by E. Abrahams (World Scientific, Singapore, 2010); 29 pages, 22 figures

    Effect of Particle-Hole Asymmetry on the Mott-Hubbard Metal-Insulator Transition

    Full text link
    The Mott-Hubbard metal-insulator transition is one of the most important problems in correlated electron systems. In the past decade, much progress has been made on examining a particle-hole symmetric form of the transition in the Hubbard model with dynamical mean field theory where it was found that the electronic self energy develops a pole at the transition. We examine the particle-hole asymmetric metal-insulator transition in the Falicov-Kimball model, and find that a number of features change when the noninteracting density of states has a finite bandwidth. Since, generically particle-hole symmetry is broken in real materials, our results have an impact on understanding the metal-insulator transition in real materials.Comment: 5 pages, 3 figure

    Effective action approach to strongly correlated fermion systems

    Full text link
    We construct a new functional for the single particle Green's function, which is a variant of the standard Baym Kadanoff functional. The stability of the stationary solutions to the new functional is directly related to aspects of the irreducible particle hole interaction through the Bethe Salpeter equation. A startling aspect of this functional is that it allows a simple and rigorous derivation of both the standard and extended dynamical mean field (DMFT) equations as stationary conditions. Though the DMFT equations were formerly obtained only in the limit of infinite lattice coordination, the new functional described in the work, presents a way of directly extending DMFT to finite dimensional systems, both on a lattice and in a continuum. Instabilities of the stationary solution at the bifurcation point of the functional, signal the appearance of a zero mode at the Mott transition which then couples t o physical quantities resulting in divergences at the transition.Comment: 9 page

    The RKKY interactions and the Mott Transition

    Full text link
    A two-site cluster generalization of the Hubbard model in large dimensions is examined in order to study the role of short-range spin correlations near the metal-insulator transition (MIT). The model is mapped to a two-impurity Kondo-Anderson model in a self-consistently determined bath, making it possible to directly address the competition between the Kondo effect and RKKY interactions in a lattice context. Our results indicate that the RKKY interactions lead to qualitative modifications of the MIT scenario even in the absence of long range antiferromagnetic ordering.Comment: 10 pages, 10 figures; to appear in Phys. Rev. B (1999

    Correlation Induced Insulator to Metal Transitions

    Full text link
    We study a spinless two-band model at half-filling in the limit of infinite dimensions. The ground state of this model in the non-interacting limit is a band-insulator. We identify transitions to a metal and to a charge-Mott insulator, using a combination of analytical, Quantum Monte Carlo, and zero temperature recursion methods. The metallic phase is a non-Fermi liquid state with algebraic local correlation functions with universal exponents over a range of parameters.Comment: 12 pages, REVTE

    Melting transition of an Ising glass driven by magnetic field

    Full text link
    The quantum critical behavior of the Ising glass in a magnetic field is investigated. We focus on the spin glass to paramagnet transition of the transverse degrees of freedom in the presence of finite longitudinal field. We use two complementary techniques, the Landau theory close to the T=0 transition and the exact diagonalization method for finite systems. This allows us to estimate the size of the critical region and characterize various crossover regimes. An unexpectedly small energy scale on the disordered side of the critical line is found, and its possible relevance to experiments on metallic glasses is briefly discussed.Comment: 4 pages, 3 figure
    • …
    corecore