3 research outputs found

    Π‘ΠžΠ§Π•Π’ΠΠΠΠΠ― ΠΠΠ•Π‘Π’Π•Π—Π˜Π― ПРИ Π Π•Π—Π•ΠšΠ¦Π˜Π˜ Π›Π•Π“ΠšΠ˜Π₯

    Get PDF
    In order to improve outcomes of surgical treatment of thoracic diseases, the peri-operative protection is to be constantly enhanced. Goal: to assess the effect of combined anesthesia with thoracic epidural analgesia in the peri-operative period on hemodynamics and respiratory exchange during radical pulmonary surgery. Subjects and methods. The prospective randomized study was performed aiming to assess the effect of various options of anesthesia in 46 patients who had planned radical pulmonary surgery. The patients were randomly divided into two groups. Group 1 (n = 23) had combined anesthesia. Analgesia was provided through segmental epidural block on the level of Th4 β€’Th5 by intermittent bolus dosing of 0.75% solution of ropivacaine (0.7-0.8 mg/kg) and fentanyl (1.3-1.5 mcg/kg), and during the surgery, the mixture of 0.02% solution of ropivacaine and fentanyl (4 mcg/kg) was continuously infused at the rate of 4-6 ml/h. In Group 2 (n = 23), analgesia was provided by infusions of fentanyl, epidural analgesia was used in the post-operative period as a component of multi-modal post-operative pain relief. In both groups, the cortical component was provided by the low-flow inhalation of sevoflurane under BIS monitoring. Pipecuronium bromide solution was intermittently administered in order to provide muscle relaxation. Conclusion. The positive impact on hemodynamics and respiratory exchange was observed when using combined anesthesia based on thoracic epidural analgesia and inhalation anesthesia with sevoflurane. Для ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΡ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ лСчСния Ρ‚ΠΎΡ€Π°ΠΊΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ постоянноС ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈΡ… ΠΏΠ΅Ρ€ΠΈΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ Π·Π°Ρ‰ΠΈΡ‚Ρ‹. ЦСль: ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ влияниС сочСтанной анСстСзии с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ Π³Ρ€ΡƒΠ΄Π½ΠΎΠΉ ΡΠΏΠΈΠ΄ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠΉ анальгСзии Π² ΠΏΠ΅Ρ€ΠΈΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΌ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π΅ Π½Π° Π³Π΅ΠΌΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΡƒ ΠΈ Π³Π°Π·ΠΎΠΎΠ±ΠΌΠ΅Π½ ΠΏΡ€ΠΈ Ρ€Π°Π΄ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… Π²ΠΌΠ΅ΡˆΠ°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π°Ρ… Π½Π° Π»Π΅Π³ΠΊΠΈΡ…. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ проспСктивноС Ρ€Π°Π½Π΄ΠΎΠΌΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ΅ исслСдованиС влияния Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ² анСстСзии Ρƒ 46 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ², ΠΏΠ΅Ρ€Π΅Π½Π΅ΡΡˆΠΈΡ… Ρ€Π°Π΄ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎΠ΅ ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ΅ Π²ΠΌΠ΅ΡˆΠ°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ Π½Π° Π»Π΅Π³ΠΊΠΈΡ… Π² ΠΏΠ»Π°Π½ΠΎΠ²ΠΎΠΌ порядкС, Π½Π° ΠΏΠ΅Ρ€ΠΈΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ состояниС систСмной Π³Π΅ΠΌΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ ΠΈ Π³Π°Π·ΠΎΠΎΠ±ΠΌΠ΅Π½Π°. Π‘ΠΎΠ»ΡŒΠ½Ρ‹Π΅ Ρ€Π°Π½Π΄ΠΎΠΌΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ Π½Π° Π΄Π²Π΅ Π³Ρ€ΡƒΠΏΠΏΡ‹. Π’ 1-ΠΉ Π³Ρ€ΡƒΠΏΠΏΠ΅ (n = 23) анСстСзия Π±Ρ‹Π»Π° сочСтанной. Π€ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ анальгСзии осущСствляли сСгмСнтарной ΡΠΏΠΈΠ΄ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠΉ Π±Π»ΠΎΠΊΠ°Π΄ΠΎΠΉ Π½Π° ΡƒΡ€ΠΎΠ²Π½Π΅ Th4 β€’Th5 Π΄Ρ€ΠΎΠ±Π½Ρ‹ΠΌ Π±ΠΎΠ»ΡŽΡΠ½Ρ‹ΠΌ Π²Π²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ 0,75%-Π½ΠΎΠ³ΠΎ раствора Ρ€ΠΎΠΏΠΈΠ²Π°ΠΊΠ°ΠΈΠ½Π° (0,7βˆ’0,8 ΠΌΠ³/ΠΊΠ³) ΠΈ Ρ„Π΅Π½Ρ‚Π°Π½ΠΈΠ»Π° (1,3–1,5 ΠΌΠΊΠ³/ΠΊΠ³), Π²ΠΎ врСмя ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΏΠΎΡΡ‚ΠΎΡΠ½Π½ΡƒΡŽ ΠΈΠ½Ρ„ΡƒΠ·ΠΈΡŽ смСси 0,2%-Π½ΠΎΠ³ΠΎ раствора Ρ€ΠΎΠΏΠΈΠ²Π°ΠΊΠ°ΠΈΠ½Π° ΠΈ Ρ„Π΅Π½Ρ‚Π°Π½ΠΈΠ»Π° (4 ΠΌΠΊΠ³/ΠΌΠ») со ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ 4–6 ΠΌΠ»/Ρ‡. Π’ΠΎ 2-ΠΉ Π³Ρ€ΡƒΠΏΠΏΠ΅ (n = 23) Π°Π½Π°Π»ΡŒΠ³Π΅Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠΉ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ достигался систСмным ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ Ρ„Π΅Π½Ρ‚Π°Π½ΠΈΠ»Π°, ΡΠΏΠΈΠ΄ΡƒΡ€Π°Π»ΡŒΠ½ΡƒΡŽ анальгСзию Π½Π°Ρ‡ΠΈΠ½Π°Π»ΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π² послСопСрационном ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π΅ Π² качСствС ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π° ΠΌΡƒΠ»ΡŒΡ‚ΠΈΠΌΠΎΠ΄Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ послСопСрационного обСзболивания. ΠšΠΎΡ€ΠΊΠΎΠ²Ρ‹ΠΉ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ Π² ΠΎΠ±Π΅ΠΈΡ… Π³Ρ€ΡƒΠΏΠΏΠ°Ρ… достигался ингаляциСй сСвофлурана Π² Π½ΠΈΠ·ΠΊΠΎΠΌ ΠΏΠΎΡ‚ΠΎΠΊΠ΅ ΠΏΠΎΠ΄ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π΅ΠΌ BIS-ΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€ΠΈΠ½Π³Π°. ΠœΠΈΠΎΡ€Π΅Π»Π°ΠΊΡΠ°Ρ†ΠΈΡ ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΠ»Π°ΡΡŒ Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΎΠ½Π½Ρ‹ΠΌ Π²Π²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ раствора ΠΏΠΈΠΏΠ΅ΠΊΡƒΡ€ΠΎΠ½ΠΈΡƒΠΌΠ° Π±Ρ€ΠΎΠΌΠΈΠ΄Π°. Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ВыявлСно благоприятноС влияниС сочСтанной анСстСзии Π½Π° основС Π³Ρ€ΡƒΠ΄Π½ΠΎΠΉ ΡΠΏΠΈΠ΄ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠΉ анальгСзии ΠΈ ингаляционной анСстСзии сСвофлураном Π½Π° ΡΠΈΡΡ‚Π΅ΠΌΠ½ΡƒΡŽ Π³Π΅ΠΌΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΡƒ ΠΈ Π³Π°Π·ΠΎΠΎΠ±ΠΌΠ΅Π½.

    COMBINED ANESTHESIA IN PULMONARY RESECTION

    Get PDF
    In order to improve outcomes of surgical treatment of thoracic diseases, the peri-operative protection is to be constantly enhanced. Goal: to assess the effect of combined anesthesia with thoracic epidural analgesia in the peri-operative period on hemodynamics and respiratory exchange during radical pulmonary surgery. Subjects and methods. The prospective randomized study was performed aiming to assess the effect of various options of anesthesia in 46 patients who had planned radical pulmonary surgery. The patients were randomly divided into two groups. Group 1 (n = 23) had combined anesthesia. Analgesia was provided through segmental epidural block on the level of Th4 β€’Th5 by intermittent bolus dosing of 0.75% solution of ropivacaine (0.7-0.8 mg/kg) and fentanyl (1.3-1.5 mcg/kg), and during the surgery, the mixture of 0.02% solution of ropivacaine and fentanyl (4 mcg/kg) was continuously infused at the rate of 4-6 ml/h. In Group 2 (n = 23), analgesia was provided by infusions of fentanyl, epidural analgesia was used in the post-operative period as a component of multi-modal post-operative pain relief. In both groups, the cortical component was provided by the low-flow inhalation of sevoflurane under BIS monitoring. Pipecuronium bromide solution was intermittently administered in order to provide muscle relaxation. Conclusion. The positive impact on hemodynamics and respiratory exchange was observed when using combined anesthesia based on thoracic epidural analgesia and inhalation anesthesia with sevoflurane

    Dynamic System Transfer Function Identification Based on the Experimental Results

    No full text
    The paper deals with identifying linear dynamical systems from the experimental data obtained through applying the test signals to the system. The paper objective is to determine both the form and the coefficients of the transfer function retrieved from the hodograph samples experimentally at bench test. The order of the frequency transfer function of the system being identified was assumed to be unknown. It was expected that in obtaining the frequency characteristics of a real system there would be noise during the experiment as a result of which the points of the experimentally obtained hodograph would be randomly shifted. As a model, a certain transfer function of the system was adopted. The authors proposed to find a solution of the identification problem in the class of hodographs specified by the model of the system. The search for unknown coefficients of the transfer function of the system model is carried out by minimizing a proximity criterion (measure) - described and published earlier by one of the authors - between the experimentally received system hodograph and the system model on an entire set of the experimental points of the system hodograph and the hodograph of the system model. The solution of linear dynamic system identification from the frequency hodograph was reduced to solving a system of equations of the system model frequency transfer function that is linear with respect to unknown parameters.The proposed identification algorithm allows us to determine the order of the frequency transfer function of the identified system from the experimentally obtained samples of the frequency hodograph of the system. For dynamic systems of the fifth order at most there is software developed to simulate the process providing the pseudo-experimental data with random errors and determining the parameters of such systems.A computational experiment has been carried out to evaluate the error with which the proposed algorithm determines the parameter values of the system to be identified. The illustrative computational experiment has shown that using the proposed algorithm for identifying a linear dynamic system from the frequency hodograph the error in determining the coefficient values of the frequency transfer function of the system is comparable with a range of measuring error in the experimental samples of the hodograph of this system. In known sources on identification of linear dynamic systems there is no method of identification this publication describes. This identification method of linear dynamic systems can find application in experimental testing, verification tests in situ and iron bird tests for vehicles of various purposes.</p
    corecore