2 research outputs found

    Comments on the Sign and Other Aspects of Semiclassical Casimir Energies

    Full text link
    The Casimir energy of a massless scalar field is semiclassically given by contributions due to classical periodic rays. The required subtractions in the spectral density are determined explicitly. The so defined semiclassical Casimir energy coincides with that obtained using zeta function regularization in the cases studied. Poles in the analytic continuation of zeta function regularization are related to non-universal subtractions in the spectral density. The sign of the Casimir energy of a scalar field on a smooth manifold is estimated by the sign of the contribution due to the shortest periodic rays only. Demanding continuity of the Casimir energy under small deformations of the manifold, the method is extended to integrable systems. The Casimir energy of a massless scalar field on a manifold with boundaries includes contributions due to periodic rays that lie entirely within the boundaries. These contributions in general depend on the boundary conditions. Although the Casimir energy due to a massless scalar field may be sensitive to the physical dimensions of manifolds with boundary, its sign can in favorable cases be inferred without explicit calculation of the Casimir energy.Comment: 39 pages, no figures, references added, some correction
    corecore