1 research outputs found
Diagonalizing operators over continuous fields of C*-algebras
It is well known that in the commutative case, i.e. for being a
commutative C*-algebra, compact selfadjoint operators acting on the Hilbert
C*-module (= continuous families of such operators , ) can
be diagonalized if we pass to a bigger W*-algebra which can be obtained from by completing it with respect to the weak
topology. Unlike the "eigenvectors", which have coordinates from , the
"eigenvalues" are continuous, i.e. lie in the C*-algebra . We discuss here
the non-commutative analog of this well-known fact. Here the "eigenvalues" are
defined not uniquely but in some cases they can also be taken from the initial
C*-algebra instead of the bigger W*-algebra. We prove here that such is the
case for some continuous fields of real rank zero C*-algebras over a
one-dimensional manifold and give an example of a C*-algebra for which the
"eigenvalues" cannot be chosen from , i.e. are discontinuous. The main point
of the proof is connected with a problem on almost commuting operators. We
prove that for some C*-algebras if is a selfadjoint, is a
unitary and if the norm of their commutant is small enough then one can
connect with the unity by a path so that the norm of
would be also small along this path.Comment: 21 pages, LaTeX 2.09, no figure