1 research outputs found

    Diagonalizing operators over continuous fields of C*-algebras

    Full text link
    It is well known that in the commutative case, i.e. for A=C(X)A=C(X) being a commutative C*-algebra, compact selfadjoint operators acting on the Hilbert C*-module HAH_A (= continuous families of such operators K(x)K(x), x∈Xx\in X) can be diagonalized if we pass to a bigger W*-algebra L∞(X)=AβŠƒAL^\infty(X)={\bf A} \supset A which can be obtained from AA by completing it with respect to the weak topology. Unlike the "eigenvectors", which have coordinates from A\bf A, the "eigenvalues" are continuous, i.e. lie in the C*-algebra AA. We discuss here the non-commutative analog of this well-known fact. Here the "eigenvalues" are defined not uniquely but in some cases they can also be taken from the initial C*-algebra instead of the bigger W*-algebra. We prove here that such is the case for some continuous fields of real rank zero C*-algebras over a one-dimensional manifold and give an example of a C*-algebra AA for which the "eigenvalues" cannot be chosen from AA, i.e. are discontinuous. The main point of the proof is connected with a problem on almost commuting operators. We prove that for some C*-algebras if h∈Ah\in A is a selfadjoint, u∈Au\in A is a unitary and if the norm of their commutant [u,h][u,h] is small enough then one can connect uu with the unity by a path u(t)u(t) so that the norm of [u(t),h][u(t),h] would be also small along this path.Comment: 21 pages, LaTeX 2.09, no figure
    corecore