45 research outputs found

    Temporally-Controlled Site-Specific Recombination in Zebrafish

    Get PDF
    Conventional use of the site-specific recombinase Cre is a powerful technology in mouse, but almost absent in other vertebrate model organisms. In zebrafish, Cre-mediated recombination efficiency was previously very low. Here we show that using transposon-mediated transgenesis, Cre is in fact highly efficient in this organism. Furthermore, temporal control of recombination can be achieved by using the ligand-inducible CreERT2. Site-specific recombination only occurs upon administration of the drug tamoxifen (TAM) or its active metabolite, 4-hydroxy-tamoxifen (4-OHT). Cre-mediated recombination is detectable already 4 or 2 hours after administration of TAM or 4-OHT, demonstrating fast recombination kinetics. In addition, low doses of TAM allow mosaic labeling of single cells. Combined, our results show that conditional Cre/lox will be a valuable tool for both, embryonic and adult zebrafish studies. Furthermore, single copy insertion transgenesis of Cre/lox constructs suggest a strategy suitable also for other organisms

    F-Spondin/spon1b Expression Patterns in Developing and Adult Zebrafish

    Get PDF
    F-spondin, an extracellular matrix protein, is an important player in embryonic morphogenesis and CNS development, but its presence and role later in life remains largely unknown. We generated a transgenic zebrafish in which GFP is expressed under the control of the F-spondin (spon1b) promoter, and used it in combination with complementary techniques to undertake a detailed characterization of the expression patterns of F-spondin in developing and adult brain and periphery. We found that F-spondin is often associated with structures forming long neuronal tracts, including retinal ganglion cells, the olfactory bulb, the habenula, and the nucleus of the medial longitudinal fasciculus (nMLF). F-spondin expression coincides with zones of adult neurogenesis and is abundant in CSF-contacting secretory neurons, especially those in the hypothalamus. Use of this new transgenic model also revealed F-spondin expression patterns in the peripheral CNS, notably in enteric neurons, and in peripheral tissues involved in active patterning or proliferation in adults, including the endoskeleton of zebrafish fins and the continuously regenerating pharyngeal teeth. Moreover, patterning of the regenerating caudal fin following fin amputation in adult zebrafish was associated with F-spondin expression in the blastema, a proliferative region critical for tissue reconstitution. Together, these findings suggest major roles for F-spondin in the CNS and periphery of the developing and adult vertebrate

    Using the Tg(nrd:egfp)/albino Zebrafish Line to Characterize In Vivo Expression of neurod

    Get PDF
    In this study, we used a newly-created transgenic zebrafish, Tg(nrd:egfp)/albino, to further characterize the expression of neurod in the developing and adult retina and to determine neurod expression during adult photoreceptor regeneration. We also provide observations regarding the expression of neurod in a variety of other tissues. In this line, EGFP is found in cells of the developing and adult retina, pineal gland, cerebellum, olfactory bulbs, midbrain, hindbrain, neural tube, lateral line, inner ear, pancreas, gut, and fin. Using immunohistochemistry and in situ hybridization, we compare the expression of the nrd:egfp transgene to that of endogenous neurod and to known retinal cell types. Consistent with previous data based on in situ hybridizations, we show that during retinal development, the nrd:egfp transgene is not expressed in proliferating retinal neuroepithelium, and is expressed in a subset of retinal neurons. In contrast to previous studies, nrd:egfp is gradually re-expressed in all rod photoreceptors. During photoreceptor regeneration in adult zebrafish, in situ hybridization reveals that neurod is not expressed in MΓΌller glial-derived neuronal progenitors, but is expressed in photoreceptor progenitors as they migrate to the outer nuclear layer and differentiate into new rod photoreceptors. During photoreceptor regeneration, expression of the nrd:egfp matches that of neurod. We conclude that Tg(nrd:egfp)/albino is a good representation of endogenous neurod expression, is a useful tool to visualize neurod expression in a variety of tissues and will aid investigating the fundamental processes that govern photoreceptor regeneration in adults

    Comprehensive catecholaminergic projectome analysis reveals single-neuron integration of zebrafish ascending and descending dopaminergic systems

    Get PDF
    Essential components of animal behaviour are modulated by dopaminergic (DA) and noradrenergic circuitry. In this study, we reveal at cellular resolution the complete set of projections ('projectome') of every single type of DA and noradrenergio neurons in the central nervous system of zebrafish larvae. The most extensive DA projections are established by posterior tubercular otp-dependent neurons, with individual somata integrating the ascending DA system, the descending diencephalospinal, as well as the endohypothalamic circuitry. These findings suggest a major role in the modulation of physiology and behaviour for otp-dependent DA neurons, which correlate with the mammalian A11 group. We further identified an endogenous subpallial DA system that not only provides most of the local DA projections, but also connects to the ventral diencephalon. The catecholaminergic projectome map provides a framework to understand the evolution and function of these neuromodulatory systems

    Bi-allelic variants in SPATA5L1 lead to intellectual disability, spastic-dystonic cerebral palsy, epilepsy, and hearing loss

    Get PDF
    Spermatogenesis-associated 5 like 1 (SPATA5L1) represents an orphan gene encoding a protein of unknown function. We report 28 bi-allelic variants in SPATA5L1 associated with sensorineural hearing loss in 47 individuals from 28 (26 unrelated) families. In addition, 25/47 affected individuals (53%) presented with microcephaly, developmental delay/intellectual disability, cerebral palsy, and/or epilepsy. Modeling indicated damaging effect of variants on the protein, largely via destabilizing effects on protein domains. Brain imaging revealed diminished cerebral volume, thin corpus callosum, and periventricular leukomalacia, and quantitative volumetry demonstrated significantly diminished white matter volumes in several individuals. Immunofluorescent imaging in rat hippocampal neurons revealed localization of Spata5l1 in neuronal and glial cell nuclei and more prominent expression in neurons. In the rodent inner ear, Spata5l1 is expressed in the neurosensory hair cells and inner ear supporting cells. Transcriptomic analysis performed with fibroblasts from affected individuals was able to distinguish affected from controls by principal components. Analysis of differentially expressed genes and networks suggested a role for SPATA5L1 in cell surface adhesion receptor function, intracellular focal adhesions, and DNA replication and mitosis. Collectively, our results indicate that bi-allelic SPATA5L1 variants lead to a human disease characterized by sensorineural hearing loss (SNHL) with or without a nonprogressive mixed neurodevelopmental phenotype

    Molecular psychiatry of zebrafish

    Get PDF
    Due to their well-characterized neural development and high genetic homology to mammals, zebrafish (Danio rerio) have emerged as a powerful model organism in the field of biological psychiatry. Here, we discuss the molecular psychiatry of zebrafish, and its implications for translational neuroscience research and modeling central nervous system (CNS) disorders. In particular, we outline recent genetic and technological developments allowing for in vivo examinations, high-throughput screening and whole-brain analyses in larval and adult zebrafish. We also summarize the application of these molecular techniques to the understanding of neuropsychiatric disease, outlining the potential of zebrafish for modeling complex brain disorders, including attention-deficit/hyperactivity disorder (ADHD), aggression, post-traumatic stress and substance abuse. Critically evaluating the advantages and limitations of larval and adult fish tests, we suggest that zebrafish models become a rapidly emerging new field in modern molecular psychiatry research

    A library of AuNPs modified by RAFT polymers of different charge and chain length: High throughput synthesis and synchrotron XFM imaging using a zebrafish larvae model

    No full text
    Gold nanoparticles (AuNPs) have been widely investigated in drug delivery and imaging. However, for such biomedical applications, the modification of AuNPs is necessary to improve their aqueous dispersion sta bility and biocompatibility, especially in a salt environment. Here, we report a simple and highly efficient method to create a library of polymer-modified gold nanoparticles (PAuNPs) and screen their dispersion stability utilizing high-throughput facilities (in total 1000 experiments). Three types of water soluble polymers with different charge and chain length were prepared using Reversible Addition-Fragmentation chain Transfer (RAFT) polymerization technology. The polymers were then converted into thiol-capped polymers by aminolysis and coated on AuNPs via thiol-gold binding to improve aqueous dispersion stability as well as the biocompatibility of AuNPs. Remarkably, we present the first report of imaging zebrafish embryos injected with a PAuNPs sample (selected from our PAuNPs library) using synchrotron X-ray fluorescence microscopy (XFM) beamline. The selected PAuNPs sample, which has been evaluated to be non-cytotoxic to L929 cells and biocompatible to zebrafish larvae in a wide range of concentrations, was injected into zebrafish larvae via the cardinal vein and could be clearly visualized in the whole circulatory system including both peripheral blood vessels and the head region by XFM. The result indicates that zebrafish larvae could be a potential animal model for probing the ability of AuNPs to cross the blood-brain barrier (BBB) and therefore hold promise for investigating AuNPs in biomedical applications such as detecting cancer and Alzheimer's disease (AD)
    corecore