2,690 research outputs found

    Characterization of transport and magnetic properties in thin film La(0.67)(Ca(x)Sr(1-x))(0.33)MnO(3) mixtures

    Full text link
    We have grown thin films of (100) oriented La_{0.67}(Ca_{x}Sr_{1-x})_{0.33}MnO_{3} on (100) NdGaO_{3} substrates by off-axis sputtering. We have looked at the changes in the resistivity and magnetoresistance of the samples as the Ca/Sr ratio was varied. We find that as the calcium fraction is decreased, the lattice match to the substrate decreases, and the films become more disordered, as observed in transport measurements and the variation in Curie and peak resistance temperatures. We find a correlation between the temperature independent and T^2 terms to the low temperature resistivity. The room temperature magnetoresistance exhibits a maximum as the peak temperature is increased by the substitution of Sr for Ca, and a change in the field dependence to the resistivity at room temperature is observed.Comment: 5 pages, 6 eps figures, to be published in Journal of Applied Physic

    Two-fluid and magnetohydrodynamic modelling of magnetic reconnection in the MAST spherical tokamak and the solar corona

    Full text link
    Twisted magnetic flux ropes are ubiquitous in space and laboratory plasmas, and the merging of such flux ropes through magnetic reconnection is an important mechanism for restructuring magnetic fields and releasing free magnetic energy. The merging-compression scenario is one possible start up scheme for spherical tokamaks, which has been used on the Mega Amp Spherical Tokamak MAST. Two current-carrying plasma rings, or flux ropes, approach each other through the mutual attraction of their like currents, and merge, through magnetic reconnection, into a single plasma torus, with substantial plasma heating. 2D resistive MHD and Hall MHD simulations of this process are reported, and new results for the temperature distribution of ions and electrons are presented. A model of the based on relaxation theory is also described, which is now extended to tight aspect ratio geometry. This model allows prediction of the final merged state and the heating. The implications of the relaxation model for heating of the solar corona are also discussed, and a model of the merger of two or more twisted coronal flux ropes is presented, allowing for different senses of twist

    A weakly nonlinear Alfvénic pulse in a transversely inhomogeneous medium

    Get PDF
    The interaction of a weakly nonlinear Alfvénic pulse with an Alfvén speed inhomogeneity in the direction perpendicular to the magnetic field is investigated. Identical to the phase mixing experienced by a harmonic Alfvén wave, sharp transverse gradients are generated in the pulse by the inhomogeneity. In the initial stage of the evolution of an initially plane Alfvénic pulse, the transverse gradients efficiently generate transversely propagating fast magnetoacoustic waves. However, high resolution full MHD numerical simulations of the developed stage of the pulse evolution show that the generation saturates due to destructive wave interference. It is shown that the weakly non-linear description of the generated fast magnetoacoustic wave is well described by the driven wave equation proposed in Nakariakov et al. (1997), and a simple numerical code (2D MacCromack), which solves it with minimal CPU resources, produces identical results to those obtained from the full MHD code (Lare2d, Arber et al. 2001). A parametric study of the phenomenon is undertaken, showing that, contrary to one's expectations, steeper inhomogeneities of the Alfvén speed do not produce higher saturation levels of the fast wave generation. There is a certain optimal gradient of the inhomogeneity that ensures the maximal efficiency of the fast wave generation
    corecore