26 research outputs found

    Microwave Spectroscopy of Cold Rubidium Atoms

    Full text link
    The effect of microwave radiation on the resonance fluorescence of a cloud of cold 85Rb^{85}Rb atoms in a magnetooptical trap is studied. The radiation frequency was tuned near the hyperfine splitting frequency of rubidium atoms in the 5S ground state. The microwave field induced magnetic dipole transitions between the magnetic sublevels of the 5S(F=2) and 5S(F=3) states, resulting in a change in the fluorescence signal. The resonance fluorescence spectra were recorded by tuning the microwave radiation frequency. The observed spectra were found to be substantially dependent on the transition under study and the frequency of a repump laser used in the cooling scheme.Comment: 6 pages, 4 figure

    Experimental implementation of a four-level N-type scheme for the observation of Electromagnetically Induced Transparency

    Full text link
    A nondegenerate four-level N-type scheme was experimentally implemented to observe electromagnetically induced transparency (EIT) at the 87^{87}Rb D2_{2} line. Radiations of two independent external-cavity semiconductor lasers were used in the experiment, the current of one of them being modulated at a frequency equal to the hyperfine-splitting frequency of the excited 5P3/2_{3/2} level. In this case, apart from the main EIT dip corresponding to the two-photon Raman resonance in a three-level Λ\Lambda-scheme, additional dips detuned from the main dip by a frequency equal to the frequency of the HF generator were observed in the absorption spectrum. These dips were due to an increase in the medium transparency at frequencies corresponding to the three-photon Raman resonances in four-level N-type schemes. The resonance shapes are analyzed as functions of generator frequency and magnetic field.Comment: 3 pages, 2 figure

    Excitonic effects on the two-color coherent control of interband transitions in bulk semiconductors

    Full text link
    Quantum interference between one- and two-photon absorption pathways allows coherent control of interband transitions in unbiased bulk semiconductors; carrier population, carrier spin polarization, photocurrent injection, and spin current injection may all be controlled. We extend the theory of these processes to include the electron-hole interaction. Our focus is on photon energies that excite carriers above the band edge, but close enough to it so that transition amplitudes based on low order expansions in k\mathbf{k} are applicable; both allowed-allowed and allowed-forbidden two-photon transition amplitudes are included. Analytic solutions are obtained using the effective mass theory of Wannier excitons; degenerate bands are accounted for, but envelope-hole coupling is neglected. We find a Coulomb enhancement of two-color coherent control process, and relate it to the Coulomb enhancements of one- and two-photon absorption. In addition, we find a frequency dependent phase shift in the dependence of photocurrent and spin current on the optical phases. The phase shift decreases monotonically from π/2\pi /2 at the band edge to 0 over an energy range governed by the exciton binding energy. It is the difference between the partial wave phase shifts of the electron-hole envelope function reached by one- and two-photon pathways.Comment: 31 pages, 4 figures, to be published in Phys. Rev.
    corecore