78 research outputs found
Maximal operator in variable exponent generalized morrey spaces on quasi-metric measure space
We consider generalized Morrey spaces on quasi-metric measure spaces , in general unbounded, with variable exponent p(x) and a general function defining the Morrey-type norm. No linear structure of the underlying space X is assumed. The admission of unbounded X generates problems known in variable exponent analysis. We prove the boundedness results for maximal operator known earlier only for the case of bounded sets X. The conditions for the boundedness are given in terms of the so called supremal inequalities imposed on the function , which are weaker than Zygmund-type integral inequalities often used for characterization of admissible functions . Our conditions do not suppose any assumption on monotonicity of in r
Variable exponent Besov-Morrey spaces
In this paper we introduce Besov-Morrey spaces with all indices variable and study some fundamental properties. This includes a description in terms of Peetre maximal functions and atomic and molecular decompositions. This new scale of non-standard function spaces requires the introduction of variable exponent mixed Morrey-sequence spaces, which in turn are defined within the framework of semimodular spaces. In particular, we obtain a convolution inequality involving special radial kernels, which proves to be a key tool in this work.publishe
Some sharp inequalities for integral operators with homogeneous kernel
One goal of this paper is to show that a big number of inequalities for functions in L-p(R+), p >= 1, proved from time to time in journal publications are particular cases of some known general results for integral operators with homogeneous kernels including, in particular, the statements on sharp constants. Some new results are also included, e.g. the similar general equivalence result is proved and applied for 0 < p < 1. Some useful new variants of these results are pointed out and a number of known and new Hardy-Hilbert type inequalities are derived. Moreover, a new Polya-Knopp (geometric mean) inequality is derived and applied. The constants in all inequalities in this paper are sharp
- âŠ