8,321 research outputs found
A New Redshift Interpretation
A nonhomogeneous universe with vacuum energy, but without spacetime
expansion, is utilized together with gravitational and Doppler redshifts as the
basis for proposing a new interpretation of the Hubble relation and the 2.7K
Cosmic Blackbody Radiation.Comment: 9 pages LaTeX, no figure
Self-gravitating spheres of anisotropic fluid in geodesic flow
The fluid models mentioned in the title are classified. All characteristics
of the fluid are expressed through a master potential, satisfying an ordinary
second order differential equation. Different constraints are imposed on this
core of relations, finding new solutions and deriving the classical results for
perfect fluids and dust as particular cases. Many uncharged and charged
anisotropic solutions, all conformally flat and some uniform density solutions
are found. A number of solutions with linear equation among the two pressures
are derived, including the case of vanishing tangential pressure.Comment: 21 page
Hole-LO phonon interaction in InAs/GaAs quantum dots
We investigate the valence intraband transitions in p-doped self-assembled
InAs quantum dots using far-infrared magneto-optical technique with polarized
radiation. We show that a purely electronic model is unable to account for the
experimental data. We calculate the coupling between the mixed hole LO-phonon
states using the Fr\"ohlich Hamiltonian, from which we determine the polaron
states as well as the energies and oscillator strengths of the valence
intraband transitions. The good agreement between the experiments and
calculations provides strong evidence for the existence of hole-polarons and
demonstrates that the intraband magneto-optical transitions occur between
polaron states
Nonadiabatic charged spherical evolution in the postquasistatic approximation
We apply the postquasistatic approximation, an iterative method for the
evolution of self-gravitating spheres of matter, to study the evolution of
dissipative and electrically charged distributions in General Relativity. We
evolve nonadiabatic distributions assuming an equation of state that accounts
for the anisotropy induced by the electric charge. Dissipation is described by
streaming out or diffusion approximations. We match the interior solution, in
noncomoving coordinates, with the Vaidya-Reissner-Nordstr\"om exterior
solution. Two models are considered: i) a Schwarzschild-like shell in the
diffusion limit; ii) a Schwarzschild-like interior in the free streaming limit.
These toy models tell us something about the nature of the dissipative and
electrically charged collapse. Diffusion stabilizes the gravitational collapse
producing a spherical shell whose contraction is halted in a short
characteristic hydrodynamic time. The streaming out radiation provides a more
efficient mechanism for emission of energy, redistributing the electric charge
on the whole sphere, while the distribution collapses indefinitely with a
longer hydrodynamic time scale.Comment: 11 pages, 16 Figures. Accepted for publication in Phys Rev
High energy photon interactions at the LHC
Experimental prospects for studying high-energy photon-photon and
photon-proton interactions at the CERN Large Hadron Collider (LHC) are
discussed. Cross sections are calculated for many electroweak and beyond the
Standard Model processes. Selection strategies based on photon interaction
tagging techniques are studied. Assuming a typical LHC multipurpose detector,
various signals and their irreducible backgrounds are presented after applying
acceptance cuts. Prospects are discussed for the Higgs boson search, detection
of supersymmetric particles and of anomalous quartic gauge couplings, as well
as for the top quark physics.Comment: 17 pages, 16 tables and 14 figure
Non-Gaussian displacement distributions in models of heterogeneous active particle dynamics
We study the effect of randomly distributed diffusivities and speeds in two
models for active particle dynamics with active and passive fluctuations. We
demonstrate how non-Gaussian displacement distributions emerge in these models
in the long time limit, including Cauchy-type and exponential (Laplace) shapes.
Notably the resulting shapes of the displacement distributions with distributed
diffusivities for the active models considered here are in striking contrast to
passive diffusion models. For the active motion models our discussion points
out the differences between active- and passive-noise. Specifically, we
demonstrate that the case with active-noise is in nice agreement with measured
data for the displacement distribution of social amoeba.Comment: 28 pages, 8 figures, IOP LaTe
Interpretations of the Accelerating Universe
It is generally argued that the present cosmological observations support the
accelerating models of the universe, as driven by the cosmological constant or
`dark energy'. We argue here that an alternative model of the universe is
possible which explains the current observations of the universe. We
demonstrate this with a reinterpretation of the magnitude-redshift relation for
Type Ia supernovae, since this was the test that gave a spurt to the current
trend in favour of the cosmological constant.Comment: 12 pages including 2 figures, minor revision, references added, a
paragraph on the interpretation of the CMB anisotropy in the QSSC added in
conclusion, general results unchanged. To appear in the October 2002 issue of
the "Publications of the Astronmical Society of the Pacific
Bistability of the Nuclear Polarisation created through optical pumping in InGaAs Quantum Dots
We show that optical pumping of electron spins in individual InGaAs quantum
dots leads to strong nuclear polarisation that we measure via the Overhauser
shift (OHS) in magneto-photoluminescence experiments between 0 and 4T. We find
a strongly non-monotonous dependence of the OHS on the applied magnetic field,
with a maximum nuclear polarisation of 40% for intermediate magnetic fields. We
observe that the OHS is larger for nuclear fields anti-parallel to the external
field than in the parallel configuration. A bistability in the dependence of
the OHS on the spin polarization of the optically injected electrons is found.
All our findings are qualitatively understood with a model based on a simple
perturbative approach.Comment: Phys Rev B (in press
- …