9,146 research outputs found

    Non-commutative Stone duality: inverse semigroups, topological groupoids and C*-algebras

    Full text link
    We study a non-commutative generalization of Stone duality that connects a class of inverse semigroups, called Boolean inverse ∧\wedge-semigroups, with a class of topological groupoids, called Hausdorff Boolean groupoids. Much of the paper is given over to showing that Boolean inverse ∧\wedge-semigroups arise as completions of inverse semigroups we call pre-Boolean. An inverse ∧\wedge-semigroup is pre-Boolean if and only if every tight filter is an ultrafilter, where the definition of a tight filter is obtained by combining work of both Exel and Lenz. A simple necessary condition for a semigroup to be pre-Boolean is derived and a variety of examples of inverse semigroups are shown to satisfy it. Thus the polycyclic inverse monoids, and certain Rees matrix semigroups over the polycyclics, are pre-Boolean and it is proved that the groups of units of their completions are precisely the Thompson-Higman groups Gn,rG_{n,r}. The inverse semigroups arising from suitable directed graphs are also pre-Boolean and the topological groupoids arising from these graph inverse semigroups under our non-commutative Stone duality are the groupoids that arise from the Cuntz-Krieger C∗C^{\ast}-algebras.Comment: The presentation has been sharpened up and some minor errors correcte

    The Booleanization of an inverse semigroup

    Full text link
    We prove that the forgetful functor from the category of Boolean inverse semigroups to inverse semigroups with zero has a left adjoint. This left adjoint is what we term the `Booleanization'. We establish the exact connection between the Booleanization of an inverse semigroup and Paterson's universal groupoid of the inverse semigroup and we explicitly compute the Booleanization of the polycyclic inverse monoid PnP_{n} and demonstrate its affiliation with the Cuntz-Toeplitz algebra.Comment: This is an updated version of the previous paper. Typos where found have been corrected and a new section added that shows how to construct the Booleanization directly from an arbitrary inverse semigroup with zero (without having to use its distributive completion

    A non-commutative generalization of Stone duality

    Full text link
    We prove that the category of boolean inverse monoids is dually equivalent to the category of boolean groupoids. This generalizes the classical Stone duality between boolean algebras and boolean spaces. As an instance of this duality, we show that the boolean inverse monoid associated with the Cuntz groupoid is the strong orthogonal completion of the polycyclic (or Cuntz) monoid and so its group of units is a Thompson group

    A perspective on non-commutative frame theory

    Get PDF
    This paper extends the fundamental results of frame theory to a non-commutative setting where the role of locales is taken over by \'etale localic categories. This involves ideas from quantale theory and from semigroup theory, specifically Ehresmann semigroups, restriction semigroups and inverse semigroups. We establish a duality between the category of complete restriction monoids and the category of \'etale localic categories. The relationship between monoids and categories is mediated by a class of quantales called restriction quantal frames. This result builds on the work of Pedro Resende on the connection between pseudogroups and \'etale localic groupoids but in the process we both generalize and simplify: for example, we do not require involutions and, in addition, we render his result functorial. We also project down to topological spaces and, as a result, extend the classical adjunction between locales and topological spaces to an adjunction between \'etale localic categories and \'etale topological categories. In fact, varying morphisms, we obtain several adjunctions. Just as in the commutative case, we restrict these adjunctions to spatial-sober and coherent-spectral equivalences. The classical equivalence between coherent frames and distributive lattices is extended to an equivalence between coherent complete restriction monoids and distributive restriction semigroups. Consequently, we deduce several dualities between distributive restriction semigroups and spectral \'etale topological categories. We also specialize these dualities for the setting where the topological categories are cancellative or are groupoids. Our approach thus links, unifies and extends the approaches taken in the work by Lawson and Lenz and by Resende.Comment: 69 page

    Graph inverse semigroups: their characterization and completion

    Full text link
    Graph inverse semigroups generalize the polycyclic inverse monoids and play an important role in the theory of C*-algebras. This paper has two main goals: first, to provide an abstract characterization of graph inverse semigroups; and second, to show how they may be completed, under suitable conditions, to form what we call the Cuntz-Krieger semigroup of the graph. This semigroup is the ample semigroup of a topological groupoid associated with the graph, and the semigroup analogue of the Leavitt path algebra of the graph.Comment: Some minor corrections made and tangential material remove
    • …
    corecore