165 research outputs found

    Direct measurements of the fractional quantum Hall effect gaps

    Full text link
    We measure the chemical potential jump across the fractional gap in the low-temperature limit in the two-dimensional electron system of GaAs/AlGaAs single heterojunctions. In the fully spin-polarized regime, the gap for filling factor nu=1/3 increases LINEARLY with magnetic field and is coincident with that for nu=2/3, reflecting the electron-hole symmetry in the spin-split Landau level. In low magnetic fields, at the ground-state spin transition for nu=2/3, a correlated behavior of the nu=1/3 and nu=2/3 gaps is observed

    Canted antiferromagnetic phase in a double quantum well in a tilted quantizing magnetic field

    Full text link
    We investigate the double-layer electron system in a parabolic quantum well at filling factor ν=2\nu=2 in a tilted magnetic field using capacitance spectroscopy. The competition between two ground states is found at the Zeeman splitting appreciably smaller than the symmetric-antisymmetric splitting. Although at the transition point the system breaks up into domains of the two competing states, the activation energy turns out to be finite, signaling the occurrence of a new insulator-insulator quantum phase transition. We interpret the obtained results in terms of a predicted canted antiferromagnetic phase.Comment: 4 pages, 3 figures included, accepted to PR

    Hybridization of electron subbands in a double quantum well at quantizing magnetic field

    Full text link
    We employ magnetocapacitance and far-infrared spectroscopy techniques to study the spectrum of the double-layer electron system in a parabolic quantum well with a narrow tunnel barrier in the centre. For gate-bias-controlled asymmetric electron density distributions in this soft two-subband system we observe both individual subband gaps and double layer gaps at integer filling factor ν\nu. The bilayer gaps are shown to be either trivial common for two subbands or caused by hybridization of electron subbands in magnetic field. We describe the observed hybrid gaps at ν=1\nu=1 and ν=2\nu=2 within a simple model for the modified bilayer spectrum.Comment: REVTeX, 24 pages, 9 figures included. Submitted to Phys. Rev.

    Sharply increasing effective mass: a precursor of the spontaneous spin polarization in a dilute two-dimensional electron system

    Full text link
    We have measured the effective mass, m, and Lande g-factor in very dilute two-dimensional electron systems in silicon. Two independent methods have been used: (i) measurements of the magnetic field required to fully polarize the electrons' spins and (ii) analysis of the Shubnikov-de Haas oscillations. We have observed a sharp increase of the effective mass with decreasing electron density while the g-factor remains nearly constant and close to its value in bulk silicon. The corresponding strong rise of the spin susceptibility may be a precursor of a spontaneous spin polarization; unlike in the Stoner scenario, it originates from the enhancement of the effective mass rather than the increase of g-factor. Furthermore, using tilted magnetic fields, we have found that the enhanced effective mass is independent of the degree of spin polarization and, therefore, its increase is not related to spin exchange effects, in contradiction with existing theories. Our results show that the dilute 2D electron system in silicon behaves well beyond a weakly interacting Fermi liquid.Comment: This paper summarizes results reported in our recent publications on the subjec

    Spin gap in the 2D electron system of GaAs/AlGaAs single heterojunctions in weak magnetic fields

    Full text link
    We study the interaction-enhanced spin gaps in the two-dimensional electron gas confined in GaAs/AlGaAs single heterojunctions subjected to weak magnetic fields. The values are obtained from the chemical potential jumps measured by magnetocapacitance. The gap increase with parallel magnetic field indicates that the lowest-lying charged excitations are accompanied with a single spin flip at the odd-integer filling factor nu=1 and nu=3, in disagreement with the concept of skyrmions.Comment: as publishe

    Pauli spin susceptibility of a strongly correlated two-dimensional electron liquid

    Full text link
    Thermodynamic measurements reveal that the Pauli spin susceptibility of strongly correlated two-dimensional electrons in silicon grows critically at low electron densities - behavior that is characteristic of the existence of a phase transition.Comment: As publishe

    Indication of the ferromagnetic instability in a dilute two-dimensional electron system

    Full text link
    The magnetic field B_c, in which the electrons become fully spin-polarized, is found to be proportional to the deviation of the electron density from the zero-field metal-insulator transition in a two-dimensional electron system in silicon. The tendency of B_c to vanish at a finite electron density suggests a ferromagnetic instability in this strongly correlated electron system.Comment: 4 pages, postscript figures included. Revised versio

    On the Electron-Electron Interactions in Two Dimensions

    Full text link
    In this paper, we analyze several experiments that address the effects of electron-electron interactions in 2D electron (hole) systems in the regime of low carrier density. The interaction effects result in renormalization of the effective spin susceptibility, effective mass, and g*-factor. We found a good agreement among the data obtained for different 2D electron systems by several experimental teams using different measuring techniques. We conclude that the renormalization is not strongly affected by the material or sample-dependent parameters such as the potential well width, disorder (the carrier mobility), and the bare (band) mass. We demonstrate that the apparent disagreement between the reported results on various 2D electron systems originates mainly from different interpretations of similar "raw" data. Several important issues should be taken into account in the data processing, among them the dependences of the effective mass and spin susceptibility on the in-plane field, and the temperature dependence of the Dingle temperature. The remaining disagreement between the data for various 2D electron systems, on one hand, and the 2D hole system in GaAs, on the other hand, may indicate more complex character of electron-electron interactions in the latter system.Comment: Added refs; corrected typos. 19 pages, 7 figures. To be published in: Chapter 19, Proceedings of the EURESCO conference "Fundamental Problems of Mesoscopic Physics ", Granada, 200

    Classical effects in the weak-field magnetoresistance of InGaAs/InAlAs quantum wells

    Full text link
    We observe an unusual behavior of the low-temperature magnetoresistance of the high-mobility two-dimensional electron gas in InGaAs/InAlAs quantum wells in weak perpendicular magnetic fields. The observed magnetoresistance is qualitatively similar to that expected for the weak localization and anti-localization but its quantity exceeds significantly the scale of the quantum corrections. The calculations show that the obtained data can be explained by the classical effects in electron motion along the open orbits in a quasiperiodic potential relief manifested by the presence of ridges on the quantum well surface
    • …
    corecore