16 research outputs found

    Моделирование процессов массообмена при выращивании кристаллов KDP из раствора

    Get PDF
    Finding the conditions of high-speed single crystal growth with an appropriate quality is a priority for the industrial production of crystalline materials. Crystals of potassium dihydrogen phosphate (KDP) are important optical materials, they are grown from an aqueous solution and an increase in the rate of growth and quality of a single crystal is of great practical importance.In this paper, mathematical simulation of hydrodynamic and mass transfer processes in growing KDP crystals is performed. The flow and mass transfer are modeled within the framework of continuous medium, which is considered as an aqueous solution of a special salt — potassium dihydrogen phosphate. This salt dissolves in water to a saturation level at a high temperature. Then, such supersaturated solution is used to grow crystals at lower temperatures in non-flowing and flowing crystallizers. The mathematical model is considered in a conjugate formulation with allowance for mass transfer in the«solution—crystal» system. Local features of hydrodynamics and mass transfer in a solution near the surface of a growing crystal are determined, which can affect on the local (for a particular place and direction) crystal growth rate and the formation of defects. The requirements to the crystallizers that provide the «necessary» hydrodynamics in the solution are discussed. Its validation is shown for the flow around a long horizontal plate simulating the growing facet of the crystal. The rate of precipitation of salt was evaluated by the proposed mathematical model, which matches the calculation of solution flow according to the Navier-Stokes equations for an incompressible fluid with a thermodynamic condition for the normal growth of a face under conditions of two-dimensional nucleation. The action of the flowing crystallizers was analyzed for various solution inflows (axial and ring) and its outflow through the axial bottom hole.Определение условий высокоскоростного выращивания монокристаллов надлежащего качества является приоритетным направлением для промышленного производства кристаллических материалов. Кристаллы дигидрофосфата калия (KDP) — это важные оптические материалы, которые выращивают из водного раствора. Поэтому увеличение скорости выращивания и качества монокристалла имеет важное прикладное значение.Выполнено математическое моделирование гидродинамических и массообменных процессов при выращивании KDP кристаллов. Течение и массоперенос исследованы в рамках моделирования сплошной среды, которая рассмотрена как водный раствор специальной соли — дигидрофосфата калия. Эта соль растворяется в воде до уровня насыщения при высокой температуре. Затем такой пересыщенный раствор используют для выращивания кристаллов при более низких температурах в кристаллизаторах непроточного и проточного типов. Математическая модель рассматрена в сопряженной постановке с учетом массообмена в системе «раствор—кристалл». Определены локальные особенности гидродинамики и массообмена в растворе вблизи поверхности растущего кристалла, которые могут влиять на локальную (для конкретного места и направления) скорость роста кристалла и образование дефектов. Обсуждены требования к кристаллизаторам, обеспечивающим «нужную» гидродинамику в растворе. Для апробации математической модели рассмотрена задача о кристаллизации длинной обтекаемой горизонтальной пластины, имитирующей растущую грань кристалла. Скорость осаждения соли оценивали по предложенной математической модели, которая сопрягает расчет течения раствора по уравнениям Навье—Стокса для несжимаемой жидкости с термодинамическим условием для нормального роста грани в условиях двумерного зарождения. Рассмотрены особенности течений раствора в различных конструкциях кристаллизаторов. Действие проточных кристаллизаторов проанализировано для различных вариантов втекания раствора (осевое и кольцевое) и вытекания через осевое донное отверстие

    Influence of Growth Conditions on Mechanical Properties of K<sub>2</sub>Ni<sub>X</sub>Co<sub>(1−X)</sub> (SO<sub>4</sub>)<sub>2</sub>·6H<sub>2</sub>O Crystals

    No full text
    K2NiXCo(1−X) (SO4)2·6H2O (KCNSH) mixed crystal is a promising material for solar blind optical filters, combining high transparency in the ultraviolet range with effective suppression of the visible spectral region. Increasing the mechanical strength of these crystals is important to enable them to be machined in the manufacture of optical elements. A comprehensive study of the inhomogeneities and crack resistance of KCNSH crystal as a function of the growth conditions was carried out. The influence of the radial and mosaic inhomogeneity, as well as other structural defects, on the crack resistance of the crystals was analyzed. To assess the crack resistance of crystals, the parameters ca (crack length), c/a (the ratio of crack length to the size of the indentation), and KC (fracture toughness) were used. The correctness of the obtained results was analyzed. The conditions for growing KCNSH crystals with the best crack resistance were determined on the basis of the results of the study. It is shown that growing the mixed crystals using the temperature difference technique with a peripheral solution supply into the shaper provides the best crystal quality

    Growth Kinetics of the (110) Faces of Complex Potassium Cobalt–Nickel Sulphate K2CoxNi1−x(SO4)2·6H2O Crystals

    No full text
    The normal growth rate, the steepness of polygonized growth hillocks and the velocity of step movement on the (110) faces of potassium cobalt–nickel sulphate crystals in aqueous solutions with cobalt to nickel ratios of 1:1 and 1:2 were investigated as a function of supersaturation by the geometry of growth hillocks using laser interferometry. It was found that the morphologies of growth hillocks on the (110) faces of the crystals grown from 1:1 and 1:2 solutions are similar and that the growth hillocks are formed by multiple screw dislocation sources. The experimental data on the growth kinetics of the (110) faces of the crystals were analyzed by using the Burton–Cabrera–Frank theory. It was found that (1) there is a critical supersaturation for the growth of the (110) faces, and the value of this supersaturation in the 1:2 solution is higher than that in the 1:1 solution, and (2) the kinetic coefficient of the step movement in the sectors of growth hillocks is highly anisotropic, and the values of this coefficient are larger in 1:2 solution than in 1:1 solution. These results are discussed in the presented work
    corecore