15 research outputs found
Macrospin Models of Spin Transfer Dynamics
The current-induced magnetization dynamics of a spin valve are studied using
a macrospin (single domain) approximation and numerical solutions of a
generalized Landau-Lifshitz-Gilbert equation. For the purpose of quantitative
comparison with experiment [Kiselev {\it et al.} Nature {\bf 425}, 380 (2003)],
we calculate the resistance and microwave power as a function of current and
external field including the effects of anisotropies, damping, spin-transfer
torque, thermal fluctuations, spin-pumping, and incomplete absorption of
transverse spin current. While many features of experiment appear in the
simulations, there are two significant discrepancies: the current dependence of
the precession frequency and the presence/absence of a microwave quiet magnetic
phase with a distinct magnetoresistance signature. Comparison is made with
micromagnetic simulations designed to model the same experiment.Comment: 14 pages, 14 figures. Email [email protected] for a
pdf with higher quality figure
Magnetization reversal driven by spin-injection : a mesoscopic spin-transfer effect
A mesoscopic description of spin-transfer effect is proposed, based on the
spin-injection mechanism occurring at the junction with a ferromagnet. The
effect of spin-injection is to modify locally, in the ferromagnetic
configuration space, the density of magnetic moments. The corresponding
gradient leads to a current-dependent diffusion process of the magnetization.
In order to describe this effect, the dynamics of the magnetization of a
ferromagnetic single domain is reconsidered in the framework of the
thermokinetic theory of mesoscopic systems. Assuming an Onsager
cross-coefficient that couples the currents, it is shown that spin-dependent
electric transport leads to a correction of the Landau-Lifshitz-Gilbert
equation of the ferromagnetic order parameter with supplementary diffusion
terms. The consequence of spin-injection in terms of activation process of the
ferromagnet is deduced, and the expressions of the effective energy barrier and
of the critical current are derived. Magnetic fluctuations are calculated: the
correction to the fluctuations is similar to that predicted for the activation.
These predictions are consistent with the measurements of spin-transfer
obtained in the activation regime and for ferromagnetic resonance under
spin-injection.Comment: 20 pages, 2 figure
Adiabatic Domain Wall Motion and Landau-Lifshitz Damping
Recent theory and measurements of the velocity of current-driven domain walls
in magnetic nanowires have re-opened the unresolved question of whether
Landau-Lifshitz damping or Gilbert damping provides the more natural
description of dissipative magnetization dynamics. In this paper, we argue that
(as in the past) experiment cannot distinguish the two, but that
Landau-Lifshitz damping nevertheless provides the most physically sensible
interpretation of the equation of motion. From this perspective, (i) adiabatic
spin-transfer torque dominates the dynamics with small corrections from
non-adiabatic effects; (ii) the damping always decreases the magnetic free
energy, and (iii) microscopic calculations of damping become consistent with
general statistical and thermodynamic considerations
Influence of a Uniform Current on Collective Magnetization Dynamics in a Ferromagnetic Metal
We discuss the influence of a uniform current, , on the
magnetization dynamics of a ferromagnetic metal. We find that the magnon energy
has a current-induced contribution proportional to
, where is the spin-current, and
predict that collective dynamics will be more strongly damped at finite . We obtain similar results for models with and without local moment
participation in the magnetic order. For transition metal ferromagnets, we
estimate that the uniform magnetic state will be destabilized for . We discuss the relationship of this effect to
the spin-torque effects that alter magnetization dynamics in inhomogeneous
magnetic systems.Comment: 12 pages, 2 figure
Spin-transfer in an open ferromagnetic layer: from negative damping to effective temperature
Spin-transfer is a typical spintronics effect that allows a ferromagnetic
layer to be switched by spin-injection. Most of the experimental results about
spin transfer are described on the basis of the Landau-Lifshitz-Gilbert
equation of the magnetization, in which additional current-dependent damping
factors are added, and can be positive or negative. The origin of the damping
can be investigated further by performing stochastic experiments, like one shot
relaxation experiments under spin-injection in the activation regime of the
magnetization. In this regime, the N\'eel-Brown activation law is observed
which leads to the introduction of a current-dependent effective temperature.
In order to justify the introduction of these counterintuitive parameters
(effective temperature and negative damping), a detailed thermokinetic analysis
of the different sub-systems involved is performed. We propose a thermokinetic
description of the different forms of energy exchanged between the electric and
the ferromagnetic sub-systems at a Normal/Ferromagnetic junction. The
corresponding Fokker Planck equations, including relaxations, are derived. The
damping coefficients are studied in terms of Onsager-Casimir transport
coefficients, with the help of the reciprocity relations. The effective
temperature is deduced in the activation regime.Comment: 65 pages, 10 figure