152 research outputs found

    Probing interfacial pair breaking in tunnel junctions based on the first and the second harmonics of the Josephson current

    Full text link
    It will be shown that a pronounced interfacial pair breaking can be identified in Josephson tunnel junctions provided the first j_{1c} and the second j_{2c} harmonics of the supercurrent, as well as the depairing current in the bulk j_{dp}, are known. Namely, within the Ginzburg-Landau theory a strong interfacial pair breaking results in the relation j_{2c}j_{dp}>>j_{1c}^2, while in standard junctions, with negligibly small pair breaking, the relation of opposite character takes place.Comment: 6 pages, published versio

    Calculation of gluon and four-quark condensates from the operator expansion

    Full text link
    The magnitudes of gluon and four-quark condensates are found from the analysis of vector mesons consisting of light quarks (the families of ρ\rho and ω\omega mesons) in the 3 loops approximation. The QCD model with infinite number of vector mesons is used to describe the function R(s)R(s). This model describes well the experimental function R(s)R(s). Polarization operators calculated with this model coincide with the Wilson operator expansion at large Q2Q^2. The improved perturbative theory, such that the polarization operators have correct analytical properties, is used. The result is <0(αs/π)G20>=0.062±0.019GeV4<0 | (\alpha_s/\pi) G^2 | 0 > = 0.062 \pm 0.019 GeV^4. The electronic widths of ρ(1450)\rho(1450) and ω(1420)\omega(1420) are calculated.Comment: 18 pages, latex, changed content slightl

    Dissociation of vortex stacks into fractional-flux vortices

    Full text link
    We discuss the zero field superconducting phase transition in a finite system of magnetically coupled superconducting layers. Transverse screening is modified by the presence of other layers resulting in topological excitations with fractional flux. Vortex stacks trapping a full flux and present at any finite temperature undergo an evaporation transition which corresponds to the depairing of fractional-flux vortices in individual layers. We propose an experiment with a bi-layer system allowing us to identify the dissociation of bound vortex molecules.Comment: 4 pages, 1 figure; revised version, to appear in Phys. Rev. Let

    Theory of the Resistive Transition in Overdoped Tl2Ba2CuO6+xTl_2Ba_2CuO_{6+x}: Implications for the angular dependence of the quasiparticle scattering rate in High-TcT_c superconductors

    Full text link
    We show that recent measurements of the magnetic field dependence of the magnetization, specific heat and resistivity of overdoped Tc17KT_c \sim 17K Tl2Ba2CuO6+δTl_{2}Ba_{2}CuO_{6+\delta} in the vicinity of the superconducting Hc2H_{c2} imply that the vortex viscosity is anomalously small and that the material studied is inhomogeneous with small, a few hundred A˚\AA, regions in which the local TcT_{c} is much higher than the bulk TcT_{c}. The anomalously small vortex viscosity can be derived from a microscopic model in which the quasiparticle lifetime varies dramatically around the Fermi surface, being small everywhere except along the zone diagonal (``cold spot''). We propose experimental tests of our results.Comment: 4 pages, LaTex, 2 EPS figure

    Correlator of Topological Charge Densities in Instanton Model in QCD

    Get PDF
    The QCD sum rule for the correlator of topological charge densities and related to it longitudinal part of the correlator of singlet axial currents is considered in the framework of instanton model. The coupling constant of eta'-meson with the singlet axial current is determined. Its value appears to be in a good coincidence with the value determined recently from the connection of the part of proton spin, carried by u,d,s quarks, with the derivative of QCD topological susceptibility. From the same sum rule eta-eta' mixing angle is found in the framework of two mixing angles model. Its value is close to that found in the chiral effective theory. The correlator of topological charge densities at large momenta is calculated.Comment: 14 pages, 2 figure

    Free-energy distribution functions for the randomly forced directed polymer

    Full text link
    We study the 1+11+1-dimensional random directed polymer problem, i.e., an elastic string ϕ(x)\phi(x) subject to a Gaussian random potential V(ϕ,x)V(\phi,x) and confined within a plane. We mainly concentrate on the short-scale and finite-temperature behavior of this problem described by a short- but finite-ranged disorder correlator U(ϕ)U(\phi) and introduce two types of approximations amenable to exact solutions. Expanding the disorder potential V(ϕ,x)V0(x)+f(x)ϕ(x)V(\phi,x) \approx V_0(x) + f(x) \phi(x) at short distances, we study the random force (or Larkin) problem with V0(x)=0V_0(x) = 0 as well as the shifted random force problem including the random offset V0(x)V_0(x); as such, these models remain well defined at all scales. Alternatively, we analyze the harmonic approximation to the correlator U(ϕ)U(\phi) in a consistent manner. Using direct averaging as well as the replica technique, we derive the distribution functions PL,y(F){\cal P}_{L,y}(F) and PL(F){\cal P}_L(F) of free energies FF of a polymer of length LL for both fixed (ϕ(L)=y\phi(L) = y) and free boundary conditions on the displacement field ϕ(x)\phi(x) and determine the mean displacement correlators on the distance LL. The inconsistencies encountered in the analysis of the harmonic approximation to the correlator are traced back to its non-spectral correlator; we discuss how to implement this approximation in a proper way and present a general criterion for physically admissible disorder correlators U(ϕ)U(\phi).Comment: 16 pages, 5 figure
    corecore