537 research outputs found

    Solutions of the atmospheric, solar and LSND neutrino anomalies from TeV scale quark-lepton unification

    Get PDF
    There is a unique SU(4)SU(2)LSU(2)RSU(4) \otimes SU(2)_L \otimes SU(2)_R gauge model which allows quarks and leptons to be unified at the TeV scale. It is already known that the neutrino masses arise radiatively in the model and are naturally light. We study the atmospheric, solar and LSND neutrino anomalies within the framework of this model.Comment: Minor changes, 31 page

    Maximum lepton asymmetry from active-sterile neutrino oscillations in the Early Universe

    Get PDF
    A large lepton asymmetry could be generated in the Early Universe by oscillations of active to sterile neutrinos with a small mixing angle sin 2 \theta < 10^-2. The final order of magnitude of the lepton asymmetry \eta is mainly determined by its growth in the last stage of evolution when the MSW resonance dominates the kinetic equations. In this paper we present a simple way of calculating the maximum possible lepton asymmetry which can be created. Our results are in good agreement to previous calculations. Furthermore, we find that the growth of asymmetry does not obey any particular power law. We find that the maximum possible asymmetry at the freeze-out of the n/p ratio at T \sim 1 MeV strongly depends on the mass-squared difference \delta m^2: the asymmetry is negligible for \delta m^2 \ll 1 eV^2 and reaches asymptotically large values for \delta m^2 \ge 50 eV^2.Comment: 14 pp, 4 figure

    An apparatus to search for mirror dark matter via the invisible decay of orthopositronium in vacuum

    Full text link
    Mirror matter is a possible dark matter candidate. It is predicted to exist if parity is an unbroken symmetry of the vacuum. The existence of the mirror matter, which in addition to gravity is coupled to our world through photon-mirror photon mixing, would result in orthopositronium (o-Ps) to mirror orthopositronium (o-Ps') oscillations. The experimental signature of this effect is the invisible decay of o-Ps in vacuum. This paper describes the design of the new experiment for a search for the o-Ps -> invisible decay in vacuum with a sensitivity in the branching ratio of Br(o-Ps -> invisible)\simeq 10^{-7}, which is an order of magnitude better than the present limit on this decay mode from the Big Bang Nucleosynthesis. The experiment is based on a high-efficiency pulsed slow positron beam, which is also applicable for other experiments with o-Ps, and (with some modifications) for applied studies. Details of the experimental design and of a new pulsing method, as well as preliminary results on requirements for the pulsed beam components are presented. The effects of o-Ps collisions with the cavity walls as well as the influence of external fields on the o-Ps to o-Ps' oscillation probability are also discussed.Comment: 28 pages, 8 figure

    Mirror World and its Cosmological Consequences

    Full text link
    We briefly review the concept of a parallel `mirror' world which has the same particle physics as the observable world and couples to the latter by gravity and perhaps other very weak forces. The nucleosynthesis bounds demand that the mirror world should have a smaller temperature than the ordinary one. By this reason its evolution should substantially deviate from the standard cosmology as far as the crucial epochs like baryogenesis, nucleosynthesis etc. are concerned. In particular, we show that in the context of certain baryogenesis scenarios, the baryon asymmetry in the mirror world should be larger than in the observable one. Moreover, we show that mirror baryons could naturally constitute the dominant dark matter component of the Universe, and discuss its cosmological implications

    Explaining ΩBaryon0.2ΩDark\Omega_{Baryon} \approx 0.2 \Omega_{Dark} through the synthesis of ordinary matter from mirror matter: a more general analysis

    Full text link
    The emerging cosmological picture is of a spatially flat universe composed predominantly of three components: ordinary baryons (ΩB0.05\Omega_B \approx 0.05), non-baryonic dark matter (ΩDark0.22\Omega_{Dark} \approx 0.22) and dark energy (ΩΛ0.7\Omega_{\Lambda} \approx 0.7). We recently proposed that ordinary matter was synthesised from mirror matter, motivated by the argument that the observed similarity of ΩB\Omega_B and ΩDark\Omega_{Dark} suggests an underlying similarity between the fundamental properties of ordinary and dark matter particles. In this paper we generalise the previous analysis by considering a wider class of effective operators that non-gravitationally couple the ordinary and mirror sectors. We find that while all considered operators imply ΩDark=\Omega_{Dark} = few×ΩB\times \Omega_B, only a subset quantitatively reproduce the observed ratio ΩB/ΩDark0.20\Omega_B/\Omega_{Dark} \approx 0.20. The 1\sim 1 eV mass scale induced through these operators hints at a connection with neutrino oscillation physics.Comment: minor changes, some references added, about 10 page

    Neutrino physics and the mirror world: how exact parity symmetry explains the solar neutrino deficit, the atmospheric neutrino anomaly and the LSND experiment

    Get PDF
    Evidence for νˉμνˉe\bar \nu_{\mu} \rightarrow \bar \nu_e oscillations has been reported at LAMPF using the LSND detector. Further evidence for neutrino mixing comes from the solar neutrino deficit and the atmospheric neutrino anomaly. All of these anomalies require new physics. We show that all of these anomalies can be explained if the standard model is enlarged so that an unbroken parity symmetry can be defined. This explanation holds independently of the actual model for neutrino masses. Thus, we argue that parity symmetry is not only a beautiful candidate for a symmetry beyond the standard model, but it can also explain the known neutrino physics anomalies.Comment: 27 pages, LaTeX, no figures, additional discussion on big bang nucleosynthesis, some additional references, to appear in Phys. Rev.

    Quasi-2D Confinement of a BEC in a Combined Optical and Magnetic Potential

    Full text link
    We have added an optical potential to a conventional Time-averaged Orbiting Potential (TOP) trap to create a highly anisotropic hybrid trap for ultracold atoms. Axial confinement is provided by the optical potential; the maximum frequency currently obtainable in this direction is 2.2 kHz for rubidium. The radial confinement is independently controlled by the magnetic trap and can be a factor of 700 times smaller than in the axial direction. This large anisotropy is more than sufficient to confine condensates with ~10^5 atoms in a Quasi-2D (Q2D) regime, and we have verified this by measuring a change in the free expansion of the condensate; our results agree with a variational model.Comment: 11 pages, 10 figur

    Comparing and contrasting the νμντ\nu_{\mu} \to \nu_{\tau} and νμνs\nu_{\mu} \to \nu_s solutions to the atmospheric neutrino problem with SuperKamiokande data

    Full text link
    The νμντ\nu_{\mu} \to \nu_{\tau} and νμνs\nu_{\mu} \to \nu_s solutions to the atmospheric neutrino problem are compared with SuperKamiokande data. The differences between these solutions due to matter effects in the Earth are calculated for the ratio of μ\mu-like to ee-like events and for up-down flux asymmetries. These quantities are chosen because they are relatively insensitive to theoretical uncertainties in the overall neutrino flux normalisation and detection cross-sections and efficiencies. A χ2\chi^2 analysis using these quantities is performed yielding 3σ3\sigma ranges which are approximately given by (0.7251.0,4×1042×102eV2)(0.725 - 1.0, 4 \times 10^{-4} - 2 \times 10^{-2} eV^2) and (0.741.0,1×1032×102eV2)(0.74 - 1.0, 1 \times 10^{-3} - 2 \times 10^{-2} eV^2) for (sin22θ,Δm2)(\sin^2 2\theta,\Delta m^2) for the νμντ\nu_{\mu} \to \nu_{\tau} and νμνs\nu_{\mu} \to \nu_s solutions, respectively. Values of Δm2\Delta m^2 smaller than about 2×1032 \times 10^{-3} eV2^2 are disfavoured for the νμνs\nu_{\mu} \to \nu_s solution, suggesting that future long baseline experiments should see a positive signal if this scenario is the correct one.Comment: revtex, 22 pages, 12 figure

    Implications of mirror neutrinos for early universe cosmology

    Get PDF
    The Exact Parity Model (EPM) is, in part, a theory of neutrino mass and mixing that can solve the atmospheric, solar and LSND anomalies. The central feature of the neutrino sector is three pairs of maximally mixed ordinary and mirror neutrinos. It has been shown that ordinary-mirror neutrino oscillations can generate large neutrino asymmetries in the epoch of the early universe immediately prior to Big Bang Nucleosynthesis (BBN). The large neutrino asymmetries generically suppress the production of mirror neutrinos, and a sufficiently large νe\nu_e asymmetry can directly affect light element synthesis through nuclear reaction rates. In this paper we present a detailed calculation of neutrino asymmetry evolution driven by the six-flavour EPM neutrino sector, focusing on implications for BBN.Comment: Latex, about 55 pages long with some figure

    Discrete quark-lepton symmetry need not pose a cosmological domain wall problem

    Full text link
    Quarks and leptons may be related to each other through a spontaneously broken discrete symmetry. Models with acceptable and interesting collider phenomenology have been constructed which incorporate this idea. However, the standard Hot Big Bang model of cosmology is generally considered to eschew spontaneously broken discrete symmetries because they often lead to the formation of unacceptably massive domain walls. We point out that there are a number of plausible quark-lepton symmetric models which do not produce cosmologically troublesome domain walls. We also raise what we think are some interesting questions concerning anomalous discrete symmetries.Comment: 35pp, LATEX, PURD-TH-92-1
    corecore