558 research outputs found

    Nonlinear dispersion of stationary waves in collisionless plasmas

    Full text link
    A nonlinear dispersion of a general stationary wave in collisionless plasma is obtained in a non-differential form from a single-particle oscillation-center Hamiltonian. For electrostatic oscillations in nonmagnetized plasma, considered as a paradigmatic example, the linear dielectric function is generalized, and the trapped particle contribution to the wave frequency shift Δω\Delta\omega is found analytically as a function of the wave amplitude aa. Smooth distributions yield Δωa1/2\Delta\omega\sim a^{1/2}, as usual. However, beam-like distributions of trapped electrons result in different power laws, or even a logarithmic nonlinearity, which are derived as asymptotic limits of the same dispersion relation

    Unoccupied Band Structure of NbSe2 by Very-Low-Energy Electron Diffraction: Experiment and Theory

    Full text link
    A combined experimental and theoretical study of very-low-energy electron diffraction at the (0001) surface of 2H-NbSe2 is presented. Electron transmission spectra have been measured for energies up to 50 eV above the Fermi level with k|| varying along the GammaK line of the Brillouin zone. Ab initio calculations of the spectra have been performed with the extended linear augmented plane wave k-p method. The experimental spectra are interpreted in terms of three-dimensional one-electron band structure. Special attention is paid to the quasi-particle lifetimes: by comparing the broadening of the spectral structures in the experimental and calculated spectra the energy dependence of the optical potential Vi is determined. A sharp increase of Vi at 20 eV is detected, which is associated with a plasmon peak in the Im(-1/epsilon) function. Furthermore, the electron energy loss spectrum and the reflectivity of NbSe2 are calculated ab initio and compared with optical experiments. The obtained information on the dispersions and lifetimes of the unoccupied states is important for photoemission studies of the 3D band structure of the valence band.Comment: 17 pages, 11 Postscript figures, submitted to Phys. Rev.

    Adiabatic nonlinear waves with trapped particles: II. Wave dispersion

    Full text link
    A general nonlinear dispersion relation is derived in a nondifferential form for an adiabatic sinusoidal Langmuir wave in collisionless plasma, allowing for an arbitrary distribution of trapped electrons. The linear dielectric function is generalized, and the nonlinear kinetic frequency shift ωNL\omega_{\rm NL} is found analytically as a function of the wave amplitude aa. Smooth distributions yield ωNLa\omega_{\rm NL} \propto \sqrt{a}, as usual. However, beam-like distributions of trapped electrons result in different power laws, or even a logarithmic nonlinearity, which are derived as asymptotic limits of the same dispersion relation. Such beams are formed whenever the phase velocity changes, because the trapped distribution is in autoresonance and thus evolves differently from the passing distribution. Hence, even adiabatic ωNL(a)\omega_{\rm NL}(a) is generally nonlocal.Comment: submitted together with Papers I and II

    Band Mapping in One-Step Photoemission Theory: Multi-Bloch-Wave Structure of Final States and Interference Effects

    Full text link
    A novel Bloch-waves based one-step theory of photoemission is developed within the augmented plane wave formalism. Implications of multi-Bloch-wave structure of photoelectron final states for band mapping are established. Interference between Bloch components of initial and final states leads to prominent spectral features with characteristic frequency dispersion experimentally observed in VSe_2 and TiTe_2. Interference effects together with a non-free-electron nature of final states strongly limit the applicability of the common direct transitions band mapping approach, making the tool of one-step analysis indispensable.Comment: 4 jpg figure
    corecore