455 research outputs found

    Superconducting Mechanism through direct and redox layer doping in Pnictides

    Full text link
    The mechanism of superconductivity in pnictides is discussed through direct doping in superconducting FeAs and also in charge reservoir REO layers. The un-doped SmFeAsO is charge neutral SDW (Spin Density Wave) compound with magnetic ordering below 150 K. The Superconducting FeAs layers are doped with Co and Ni at Fe site, whereas REO layers are doped with F at O site. The electron doping in SmFeAsO through Co results in superconductivity with transition temperature (Tc) maximum up to 15 K, whereas F doping results in Tc upto 47 K in SmFeAsO. All these REFe/Co/NiAsO/F compounds are iso-structural to ZrCuSiAs structure. The samples are crystallized in a tetragonal structure with space group P4/nmm. Variation of Tc with different doping routes shows the versatility of the structure and mechanism of occurrence of superconductivity. It seems doping in redox layer is more effective than direct doping in superconducting FeAs layer.Comment: 4 Pages text + Figs: ([email protected]

    Electrical and Magnetic behaviour of PrFeAsO0.8F0.2 superconductor

    Full text link
    The superconducting and ground state samples of PrFeAsO0.8F0.2 and PrFeAsO have been synthesised via easy and versatile single step solid state reaction route. X-ray & Reitveld refine parameters of the synthesised samples are in good agreement to the earlier reported value of the structure. The ground state of the pristine compound (PrFeAsO) exhibited a metallic like step in resistivity below 150K followed by another step at 12K. The former is associated with the spin density wave (SDW) like ordering of Fe spins and later to the anomalous magnetic ordering for Pr moments. Both the resistivity anomalies are absent in case of superconducting PrFeAsO0.8F0.2 sample. Detailed high field (up to 12Tesla) electrical and magnetization measurements are carried out for superconducting PrFeAsO0.8F0.2 sample. The PrFeAsO0.8F0.2 exhibited superconducting onset (Tconset) at around 47K with Tc({\rho} =0) at 38K. Though the Tconset remains nearly invariant, the Tc({\rho} =0) is decreased with applied field, and the same is around 23K under applied field of 12Tesla. The upper critical field (Hc2) is estimated from the Ginzburg Landau equation (GL) fitting, which is found to be ~ 182Tesla. Critical current density (Jc) being calculated from high field isothermal magnetization (MH) loops with the help of Beans critical state model, is found to be of the order of 103 A/cm2. Summarily, the superconductivity characterization of single step synthesised PrFeAsO0.8F0.2 superconductor is presented.Comment: 15 Pages Text + Fig

    Role of MgO impurity on the superconducting properties of MgB2

    Full text link
    We address the effect of MgO impurity on the superconducting properties of MgB2. The synthesis of MgB2 is very crucial because of sensitivity of Mg to oxidation which may lead to MgO as a secondary phase. Rietveld refinement was performed to determine the quantitative volume fraction of MgO in the samples synthesized by two different techniques. Both the samples were subjected to magnetization measurements under dc and ac applied magnetic fields and the observed results were compared as a function of temperature. Paramagnetic Meissner effect has been observed in a sample of MgB2 having more amount of MgO (with Tc = 37.1K) whereas the pure sample MgB2 having minor quantity of MgO shows diamagnetic Meissner effect with Tc = 38.8K. M-H measurements at 10K reveal a slight difference in irreversibility field which is due to MgO impurity along with wide transition observed from ac magnetic susceptibility measurements. The magnetotransport measurements R(T)H using RN = 90%, 50% and 10% criterion on pure sample of MgB2 has been used to determine the upper critical field whereas the sample having large quantity of MgO does not allow these measurements due to its high resistance.Comment: 15 pages text + Fig

    Enhanced Critical parameters of nano-Carbon doped MgB2 Superconductor

    Get PDF
    The high field magnetization and magneto transport measurements are carried out to determine the critical superconducting parameters of MgB2-xCx system. The synthesized samples are pure phase and the lattice parameters evaluation is carried out using the Rietveld refinement. The R-T(H) measurements are done up to a field of 140 kOe. The upper critical field values, Hc2 are obtained from this data based upon the criterion of 90% of normal resistivity i.e. Hc2=H at which Rho=90%Rho; where RhoN is the normal resistivity i.e., resistivity at about 40 K in our case. The Werthamer-Helfand-Hohenberg (WHH) prediction of Hc(0) underestimates the critical field value even below than the field up to which measurement is carried out. After this the model, the Ginzburg Landau theory (GL equation) is applied to the R-T(H) data which not only calculates the Hc2(0) value but also determines the dependence of Hc2 on temperature in the low temperature high field region. The estimated Hc(0)=157.2 kOe for pure MgB2 is profoundly enhanced to 297.5 kOe for the x=0.15 sample in MgB2-xCx series. Magnetization measurements are done up to 120 kOe at different temperatures and the other parameters like irreversibility field, Hirr and critical current density Jc(H) are also calculated. The nano carbon doping results in substantial enhancement of critical parameters like Hc2, Hirr and Jc(H) in comparison to the pure MgB2 sample.Comment: 25 pages with 9 Figs: comments/suggestions([email protected]

    High pressure high temperature (HPHT) synthesis and magnetization of Magneto-Superconducting RuSr2(LnCe2)Cu2O12.25 (Ru-1232) compounds (Ln = Y and Dy)

    Full text link
    RuSr2(LnCe2)Cu2O12.25 (Ru-1232) compounds with Ln = Y and Dy being synthesized by high pressure high temperature (6GPa, 12000C) solid state synthesis route do crystallize in space group P4/mmm in near single phase form with small quantities of SrRuO3 and RuSr2(RE1.5Ce0.5)Cu2O10 (Ru-1222). Both samples exhibit magnetic transitions (Tmag.) at ~90 K with significant branching of zfc (zero-field-cooled) and fc (field-cooled) magnetization and a sharp cusp in zfc at ~ 70 K, followed by superconducting transitions at ~ 30 K. Both compounds show typical ferromagnetic hysteresis loops in magnetic moment (M) versus field (H) magnetization right upto Tmag. i.e. < 90K. To our knowledge these are the first successfully synthesized Ru-1232 compounds in near single phase with lanthanides including Y and Dy. The results are compared with widely reported Gd/Ru-1222 and Ru-1212 (RuSr2GdCu2O8) compounds. In particular, it seems that the Ru moments magnetic ordering temperature (Tmag.) scales with the c-direction distance between magnetic RuO6 octahedras in Ru-1212/1222 or 1232 systems.Comment: 15 pages of TEXT and Fig
    • …
    corecore