4 research outputs found
ΠΠΠΠΠΠ ΠΠΠΠΠΠΠΠ ΠΠΠΠΠΠΠΠΠΠΠ’ΠΠΠ¬ΠΠΠΠ ΠΠΠΠΠ’Π ΠΠΠ ΠΠΠΠΠ Π ΠΠΠ¬Π‘ΠΠΠΠΠ Π’Π ΠΠΠ‘ΠΠΠ Π’Π
The importance of multi motors electrical traction drive dynamic analysis is denoted by its large application in electrical driving railway vehicles. In this paper an analysis is presented for two inducton motors traction drive with frequency inverter, vector control, and speed sensors of each electrical drive. The goal of this work is the analysis of two induction motors electrical drive, taking into account parametric perturbations and also a limited moment of wheel-rail adhesion, by laboratory study and simulation. Because of difference between motorβs parameters, it is necessary for parallel work to select motors with identical resistances and inductive winding. For this purpose the parametric identification method was used for each electrical drive, and also for two parallel motors. The result of identification was used in control setting.The Β slippage Β of Β the Β traction Β drives Β is Β difficult Β to Β reproduce Β in Β laboratory; Β therefore a mathematical modeling and simulation of mechanical part with a traction force restriction, specific for railway transport, were carried out. The suggested simulation is built with account of elastic deformations in kinetic chain, transforming traction force. The model permits to study a dynamic system in various circumstances.The results of laboratory investigations and simulation of dynamic regimes for two motor electrical drives are presented in this article. The results of analysis show, that a minimal difference between any parameters of two motors, parallel connected to convertor, is important for the slippage stability.ΠΠΊΡΡΠ°Π»ΡΠ½ΠΎΡΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ΅ΠΆΠΈΠΌΠΎΠ² ΠΌΠ½ΠΎΠ³ΠΎΠ΄Π²ΠΈΠ³Π°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ³ΠΎΠ²ΠΎΠ³ΠΎ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΈΠ²ΠΎΠ΄Π° ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ Π΅Π³ΠΎ ΡΠΈΡΠΎΠΊΠΈΠΌ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ Π² ΡΠ΅Π»ΡΡΠΎΠ²ΠΎΠΌ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΌ ΡΡΠ°Π½ΡΠΏΠΎΡΡΠ΅. Β Π Β ΡΡΠ°ΡΡΠ΅ Β Π²ΡΠΏΠΎΠ»Π½Π΅Π½ Β Π°Π½Π°Π»ΠΈΠ· Β Π΄Π²ΡΡ
Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Β ΡΡΠ³ΠΎΠ²ΠΎΠ³ΠΎ Β ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΈΠ²ΠΎΠ΄Π° Ρ ΠΏΠΈΡΠ°Π½ΠΈΠ΅ΠΌ Π΄Π²ΡΡ
ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ Π²ΠΊΠ»ΡΡΠ΅Π½Π½ΡΡ
Π°ΡΠΈΠ½Ρ
ΡΠΎΠ½Π½ΡΡ
ΡΠ»Π΅ΠΊΡΡΠΎΠ΄Π²ΠΈΠ³Π°ΡΠ΅Π»Π΅ΠΉ ΠΎΡ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΠ΅Π»Ρ ΡΠ°ΡΡΠΎΡΡ Ρ Π²Π΅ΠΊΡΠΎΡΠ½ΡΠΌ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΈ Π΄Π°ΡΡΠΈΠΊΠ°ΠΌΠΈ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΈΠ· ΡΠ»Π΅ΠΊΡΡΠΎΠ΄Π²ΠΈΠ³Π°ΡΠ΅Π»Π΅ΠΉ. ΠΠ΅ΡΠΎΠ΄ΠΎΠΌ Π»Π°Π±ΠΎΡΠ°ΡΠΎΡΠ½ΡΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ ΠΈ ΠΈΠΌΠΈΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎ- Π²Π°Π½ΠΈΡ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ Π°Π½Π°Π»ΠΈΠ· Π΄Π²ΡΡ
Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π°ΡΠΈΠ½Ρ
ΡΠΎΠ½Π½ΠΎΠ³ΠΎ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΈΠ²ΠΎΠ΄Π° Ρ ΡΡΠ΅ΡΠΎΠΌ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
Π²ΠΎΠ·ΠΌΡΡΠ΅Π½ΠΈΠΉ, Π° ΡΠ°ΠΊΠΆΠ΅ Ρ ΡΡΠ΅ΡΠΎΠΌ ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΡΡΠ΅ΠΏΠ»Π΅Π½ΠΈΡ ΠΊΠΎΠ»Π΅Ρ Ρ ΡΠ΅Π»ΡΡΠ°ΠΌΠΈ. Π’Π°ΠΊ ΠΊΠ°ΠΊ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»ΠΈ ΠΎΠ΄Π½ΠΎΠΉ ΡΠ΅ΡΠΈΠΈ ΠΌΠΎΠ³ΡΡ ΠΈΠΌΠ΅ΡΡ ΠΎΡΠ»ΠΈΡΠΈΡ Π² ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°Ρ
, Π΄Π»Ρ Π²ΠΊΠ»ΡΡΠ΅Π½ΠΈΡ Π½Π° ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΡ ΡΠ°Π±ΠΎΡΡ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌ ΠΏΠΎΠ΄Π±ΠΎΡ ΠΌΠ°ΡΠΈΠ½ Ρ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΌ ΠΎΡΠ»ΠΈΡΠΈΠ΅ΠΌ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ ΠΈ ΠΈΠ½Π΄ΡΠΊΡΠΈΠ²Π½ΠΎΡΡΠ΅ΠΉ ΠΎΠ±ΠΌΠΎΡΠΎΠΊ. ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΠΈ ΠΌΠ΅ΡΠΎΠ΄ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΈΠ΄Π΅Π½ΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΈΠ· ΡΠ»Π΅ΠΊΡΡΠΎΠ΄Π²ΠΈΠ³Π°ΡΠ΅Π»Π΅ΠΉ, Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠ»Π΅ΠΊΡΡΠΎΠ΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ, ΡΠΊΠ²ΠΈΠ²Π°- Π»Π΅Π½ΡΠ½ΠΎΠ³ΠΎ Β Π΄Π²ΡΠΌ, Β Π²ΠΊΠ»ΡΡΠ΅Π½Π½ΡΠΌ Β ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ. Β Π Π΅Π·ΡΠ»ΡΡΠ°Ρ Β ΠΈΠ΄Π΅Π½ΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ Β Π±ΡΠ» Β ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ Π² Π½Π°ΡΡΡΠΎΠΉΠΊΠ΅ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ.ΠΠ½Π°Π»ΠΈΠ· ΡΠ΅ΠΆΠΈΠΌΠ° Π±ΡΠΊΡΠΎΠ²Π°Π½ΠΈΡ ΡΡΠ³ΠΎΠ²ΠΎΠ³ΠΎ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΈΠ²ΠΎΠ΄Π° Π² ΡΠ²ΡΠ·ΠΈ Ρ ΡΡΡΠ΄Π½ΠΎΡΡΡΠΌΠΈ Π΅Π³ΠΎ Π²ΠΎΡΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ Π² Π»Π°Π±ΠΎΡΠ°ΡΠΎΡΠ½ΡΡ
ΡΡΠ»ΠΎΠ²ΠΈΡΡ
ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΈ ΠΈΠΌΠΈΡΠ°ΡΠΈΠΎΠ½- Π½ΡΠΌ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Ρ ΡΡΠ΅ΡΠΎΠΌ ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½ΠΈΡ ΡΠΈΠ»Ρ ΡΡΠ΅ΠΏΠ»Π΅Π½ΠΈΡ, Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠ½ΠΎΠ³ΠΎ Π΄Π»Ρ ΡΠ΅Π»Ρ- ΡΠΎΠ²ΠΎΠ³ΠΎ ΡΡΠ°Π½ΡΠΏΠΎΡΡΠ°. ΠΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Π°Ρ ΠΈΠΌΠΈΡΠ°ΡΠΈΠΎΠ½Π½Π°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ ΠΏΠΎΡΡΡΠΎΠ΅Π½Π° Ρ ΡΡΠ΅ΡΠΎΠΌ ΡΠΏΡΡΠ³ΠΈΡ
Π΄Π΅ΡΠΎΡΠΌΠ°ΡΠΈΠΉ Π² ΠΊΠΈΠ½Π΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΠΏΠΈ, ΠΏΠ΅ΡΠ΅Π΄Π°ΡΡΠ΅ΠΉ ΡΡΠ³ΠΎΠ²ΠΎΠ΅ ΡΡΠΈΠ»ΠΈΠ΅. ΠΠΎΠ΄Π΅Π»Ρ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΏΡΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°ΡΡ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΡ ΡΠΈΡΡΠ΅ΠΌΡ Π² ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΡΡΠ»ΠΎΠ²ΠΈΡΡ
ΠΏΡΠΈ Π±ΡΠΊΡΠΎΠ²Π°Π½ΠΈΠΈ.ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ Π»Π°Π±ΠΎΡΠ°ΡΠΎΡΠ½ΡΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ ΠΈ ΠΈΠΌΠΈΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ΅ΠΆΠΈΠΌΠΎΠ² Π΄Π²ΡΡ
Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΈΠ²ΠΎΠ΄Π°. ΠΠ° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
Π΄Π°Π½Π½ΡΡ
ΠΌΠΎΠΆΠ½ΠΎ ΡΠ΄Π΅Π»Π°ΡΡ Π²ΡΠ²ΠΎΠ΄, ΡΡΠΎ Π±Π»ΠΈΠ·ΠΎΡΡΡ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Π΅ΠΉ, ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠ°Π΅ΠΌΡΡ
ΠΏΠ°ΡΠ°Π»- Π»Π΅Π»ΡΠ½ΠΎ ΠΊ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΠ΅Π»Ρ, ΠΈΠΌΠ΅Π΅Ρ Π²Π°ΠΆΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π΄Π»Ρ ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΡΡΠΈ ΠΊ Π±ΡΠΊΡΠΎΠ²Π°Π½ΠΈΡ
Tractional Electric Drive with Non-Sensing Element Vector Control System
The purpose of the paper is a structure formation and an analysis of non-sensing element vector control system developed for tractional electric drive with the help of mathematical simulation method. The paper presents a functional diagram of the electric drive with non-sensing element vector control systemΒ operated by an asynchronous short-circuited electric motor.Β Main expressions used for evaluation of variables of system conditions and parameters are cited in the paper. The paper provides results of mathematical simulation method for electric drive system taking into consideration various parameter values which confirm serviceability of the developed control system within the whole range of possible parameter chnges
THE ANALISYS OF RAILWAY MULTI MOTORS ELECTRICAL DRIVE DYNAMIC
The importance of multi motors electrical traction drive dynamic analysis is denoted by its large application in electrical driving railway vehicles. In this paper an analysis is presented for two inducton motors traction drive with frequency inverter, vector control, and speed sensors of each electrical drive. The goal of this work is the analysis of two induction motors electrical drive, taking into account parametric perturbations and also a limited moment of wheel-rail adhesion, by laboratory study and simulation. Because of difference between motorβs parameters, it is necessary for parallel work to select motors with identical resistances and inductive winding. For this purpose the parametric identification method was used for each electrical drive, and also for two parallel motors. The result of identification was used in control setting.The Β slippage Β of Β the Β traction Β drives Β is Β difficult Β to Β reproduce Β in Β laboratory; Β therefore a mathematical modeling and simulation of mechanical part with a traction force restriction, specific for railway transport, were carried out. The suggested simulation is built with account of elastic deformations in kinetic chain, transforming traction force. The model permits to study a dynamic system in various circumstances.The results of laboratory investigations and simulation of dynamic regimes for two motor electrical drives are presented in this article. The results of analysis show, that a minimal difference between any parameters of two motors, parallel connected to convertor, is important for the slippage stability
Π’ΡΠ³ΠΎΠ²ΡΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΈΠ²ΠΎΠ΄ Ρ Π±Π΅Π·Π΄Π°ΡΡΠΈΠΊΠΎΠ²ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΠΎΠΉ Π²Π΅ΠΊΡΠΎΡΠ½ΠΎΠ³ΠΎ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ
The purpose of the paper is a structure formation and an analysis of non-sensing element vector control system developed for tractional electric drive with the help of mathematical simulation method. The paper presents a functional diagram of the electric drive with non-sensing element vector control systemΒ operated by an asynchronous short-circuited electric motor.Β Main expressions used for evaluation of variables of system conditions and parameters are cited in the paper. The paper provides results of mathematical simulation method for electric drive system taking into consideration various parameter values which confirm serviceability of the developed control system within the whole range of possible parameter chnges.Π¦Π΅Π»ΡΡ Π΄Π°Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΡΡΠΊΡΡΡΡ ΠΈ Π°Π½Π°Π»ΠΈΠ· ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π±Π΅Π·Π΄Π°ΡΡΠΈΠΊΠΎΠ²ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ Π²Π΅ΠΊΡΠΎΡΠ½ΠΎΠ³ΠΎ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ, ΠΏΡΠ΅Π΄Π½Π°Π·Π½Π°ΡΠ΅Π½Π½ΠΎΠΉ Π΄Π»Ρ ΡΡΠ³ΠΎΠ²ΠΎΠ³ΠΎ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΈΠ²ΠΎΠ΄Π°. ΠΡΠΈΠ²ΠΎΠ΄ΠΈΡΡΡ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½Π°Ρ ΡΡ
Π΅ΠΌΠ° ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΈΠ²ΠΎΠ΄Π° Ρ Π±Π΅Π·Π΄Π°ΡΡΠΈΠΊΠΎΠ²ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΠΎΠΉ Π²Π΅ΠΊΡΠΎΡΠ½ΠΎΠ³ΠΎ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ Π°ΡΠΈΠ½Ρ
ΡΠΎΠ½Π½ΡΠΌ ΠΊΠΎΡΠΎΡΠΊΠΎΠ·Π°ΠΌΠΊΠ½ΡΡΡΠΌ ΡΠ»Π΅ΠΊΡΡΠΎΠ΄Π²ΠΈΠ³Π°ΡΠ΅Π»Π΅ΠΌ. ΠΠ°Π½Ρ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΡΠ΅ Π΄Π»Ρ ΠΎΡΠ΅Π½ΠΈΠ²Π°Π½ΠΈΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ
ΡΠΎΡΡΠΎΡΠ½ΠΈΡ ΡΠΈΡΡΠ΅ΠΌΡ ΠΈ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ².ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈΠΌΠΈΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠΈΡΡΠ΅ΠΌΡ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΈΠ²ΠΎΠ΄Π° Π΄Π»Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ², ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠΆΠ΄Π°ΡΡ ΡΠ°Π±ΠΎΡΠΎΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΡ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ Π²ΠΎ Π²ΡΠ΅ΠΌ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΡ
ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ²