4 research outputs found

    ΠΠΠΠ›Π˜Π— Π”Π˜ΠΠΠœΠ˜ΠšΠ˜ ΠœΠΠžΠ“ΠžΠ”Π’Π˜Π“ΠΠ’Π•Π›Π¬ΠΠžΠ“Πž Π­Π›Π•ΠšΠ’Π ΠžΠŸΠ Π˜Π’ΠžΠ”Π Π Π•Π›Π¬Π‘ΠžΠ’ΠžΠ“Πž ВРАНБПОРВА

    Get PDF
    The importance of multi motors electrical traction drive dynamic analysis is denoted by its large application in electrical driving railway vehicles. In this paper an analysis is presented for two inducton motors traction drive with frequency inverter, vector control, and speed sensors of each electrical drive. The goal of this work is the analysis of two induction motors electrical drive, taking into account parametric perturbations and also a limited moment of wheel-rail adhesion, by laboratory study and simulation. Because of difference between motor’s parameters, it is necessary for parallel work to select motors with identical resistances and inductive winding. For this purpose the parametric identification method was used for each electrical drive, and also for two parallel motors. The result of identification was used in control setting.The Β slippage Β of Β the Β traction Β drives Β is Β difficult Β to Β reproduce Β in Β laboratory; Β therefore a mathematical modeling and simulation of mechanical part with a traction force restriction, specific for railway transport, were carried out. The suggested simulation is built with account of elastic deformations in kinetic chain, transforming traction force. The model permits to study a dynamic system in various circumstances.The results of laboratory investigations and simulation of dynamic regimes for two motor electrical drives are presented in this article. The results of analysis show, that a minimal difference between any parameters of two motors, parallel connected to convertor, is important for the slippage stability.ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ исслСдований динамичСских Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² ΠΌΠ½ΠΎΠ³ΠΎΠ΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ тягового элСктропривода опрСдСляСтся Π΅Π³ΠΎ ΡˆΠΈΡ€ΠΎΠΊΠΈΠΌ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ Π² Ρ€Π΅Π»ΡŒΡΠΎΠ²ΠΎΠΌ элСктричСском транспортС. Β Π’ Β ΡΡ‚Π°Ρ‚ΡŒΠ΅ Β Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ Β Π°Π½Π°Π»ΠΈΠ· Β Π΄Π²ΡƒΡ…Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ  тягового  элСктропривода с ΠΏΠΈΡ‚Π°Π½ΠΈΠ΅ΠΌ Π΄Π²ΡƒΡ… ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π²ΠΊΠ»ΡŽΡ‡Π΅Π½Π½Ρ‹Ρ… асинхронных элСктродвигатСлСй ΠΎΡ‚ ΠΎΠ΄Π½ΠΎΠ³ΠΎ прСобразоватСля частоты с Π²Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹ΠΌ ΡƒΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΈ Π΄Π°Ρ‚Ρ‡ΠΈΠΊΠ°ΠΌΠΈ скорости ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΈΠ· элСктродвигатСлСй. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½Ρ‹Ρ… исслСдований ΠΈ ΠΈΠΌΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎ- вания ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ Π°Π½Π°Π»ΠΈΠ· Π΄Π²ΡƒΡ…Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ асинхронного элСктропривода с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ парамСтричСских Π²ΠΎΠ·ΠΌΡƒΡ‰Π΅Π½ΠΈΠΉ, Π° Ρ‚Π°ΠΊΠΆΠ΅ с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½Ρ‚Π° сцСплСния колСс с Ρ€Π΅Π»ΡŒΡΠ°ΠΌΠΈ. Π’Π°ΠΊ ΠΊΠ°ΠΊ Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΠΈ ΠΎΠ΄Π½ΠΎΠΉ сСрии ΠΌΠΎΠ³ΡƒΡ‚ ΠΈΠΌΠ΅Ρ‚ΡŒ отличия Π² ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°Ρ…, для Π²ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡ Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΡƒΡŽ Ρ€Π°Π±ΠΎΡ‚Ρƒ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌ ΠΏΠΎΠ΄Π±ΠΎΡ€ машин с наимСньшим ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ΠΌ сопротивлСний ΠΈ индуктивностСй ΠΎΠ±ΠΌΠΎΡ‚ΠΎΠΊ. Для этого использовали ΠΌΠ΅Ρ‚ΠΎΠ΄ парамСтричСской ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΈΠ· элСктродвигатСлСй, Π° Ρ‚Π°ΠΊΠΆΠ΅ элСктродвигатСля, эквива- Π»Π΅Π½Ρ‚Π½ΠΎΠ³ΠΎ Β Π΄Π²ΡƒΠΌ, Β Π²ΠΊΠ»ΡŽΡ‡Π΅Π½Π½Ρ‹ΠΌ Β ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ. Β Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ Β ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ Β Π±Ρ‹Π» Β ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ Π² настройкС управлСния.Анализ Ρ€Π΅ΠΆΠΈΠΌΠ° буксования тягового элСктропривода Π² связи с трудностями Π΅Π³ΠΎ воспроизвСдСния Π² Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½Ρ‹Ρ… условиях ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ матСматичСским ΠΈ ΠΈΠΌΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½- Π½Ρ‹ΠΌ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ ограничСния силы сцСплСния, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½ΠΎΠ³ΠΎ для Ρ€Π΅Π»ΡŒ- сового транспорта. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Π°Ρ имитационная модСль построСна с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ ΡƒΠΏΡ€ΡƒΠ³ΠΈΡ… Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΉ Π² кинСматичСской Ρ†Π΅ΠΏΠΈ, ΠΏΠ΅Ρ€Π΅Π΄Π°ΡŽΡ‰Π΅ΠΉ тяговоС усилиС. МодСль позволяСт ΠΏΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΡƒ систСмы Π² Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… условиях ΠΏΡ€ΠΈ буксовании.ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½Ρ‹Ρ… исслСдований ΠΈ ΠΈΠΌΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ модСлирования динамичСских Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² Π΄Π²ΡƒΡ…Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ элСктропривода. На основании ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ… ΠΌΠΎΠΆΠ½ΠΎ ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ Π²Ρ‹Π²ΠΎΠ΄, Ρ‡Ρ‚ΠΎ Π±Π»ΠΈΠ·ΠΎΡΡ‚ΡŒ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»Π΅ΠΉ, ΠΏΠΎΠ΄ΠΊΠ»ΡŽΡ‡Π°Π΅ΠΌΡ‹Ρ… ΠΏΠ°Ρ€Π°Π»- лСльно ΠΊ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚Π΅Π»ΡŽ, ΠΈΠΌΠ΅Π΅Ρ‚ Π²Π°ΠΆΠ½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ для устойчивости ΠΊ Π±ΡƒΠΊΡΠΎΠ²Π°Π½ΠΈΡŽ

    Tractional Electric Drive with Non-Sensing Element Vector Control System

    No full text
    The purpose of the paper is a structure formation and an analysis of non-sensing element vector control system developed for tractional electric drive with the help of mathematical simulation method. The paper presents a functional diagram of the electric drive with non-sensing element vector control systemΒ  operated by an asynchronous short-circuited electric motor.Β  Main expressions used for evaluation of variables of system conditions and parameters are cited in the paper. The paper provides results of mathematical simulation method for electric drive system taking into consideration various parameter values which confirm serviceability of the developed control system within the whole range of possible parameter chnges

    THE ANALISYS OF RAILWAY MULTI MOTORS ELECTRICAL DRIVE DYNAMIC

    No full text
    The importance of multi motors electrical traction drive dynamic analysis is denoted by its large application in electrical driving railway vehicles. In this paper an analysis is presented for two inducton motors traction drive with frequency inverter, vector control, and speed sensors of each electrical drive. The goal of this work is the analysis of two induction motors electrical drive, taking into account parametric perturbations and also a limited moment of wheel-rail adhesion, by laboratory study and simulation. Because of difference between motor’s parameters, it is necessary for parallel work to select motors with identical resistances and inductive winding. For this purpose the parametric identification method was used for each electrical drive, and also for two parallel motors. The result of identification was used in control setting.The Β slippage Β of Β the Β traction Β drives Β is Β difficult Β to Β reproduce Β in Β laboratory; Β therefore a mathematical modeling and simulation of mechanical part with a traction force restriction, specific for railway transport, were carried out. The suggested simulation is built with account of elastic deformations in kinetic chain, transforming traction force. The model permits to study a dynamic system in various circumstances.The results of laboratory investigations and simulation of dynamic regimes for two motor electrical drives are presented in this article. The results of analysis show, that a minimal difference between any parameters of two motors, parallel connected to convertor, is important for the slippage stability

    Вяговый элСктропривод с Π±Π΅Π·Π΄Π°Ρ‚Ρ‡ΠΈΠΊΠΎΠ²ΠΎΠΉ систСмой Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ управлСния

    Get PDF
    The purpose of the paper is a structure formation and an analysis of non-sensing element vector control system developed for tractional electric drive with the help of mathematical simulation method. The paper presents a functional diagram of the electric drive with non-sensing element vector control systemΒ  operated by an asynchronous short-circuited electric motor.Β  Main expressions used for evaluation of variables of system conditions and parameters are cited in the paper. The paper provides results of mathematical simulation method for electric drive system taking into consideration various parameter values which confirm serviceability of the developed control system within the whole range of possible parameter chnges.ЦСлью Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ являСтся Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ структуры ΠΈ Π°Π½Π°Π»ΠΈΠ· ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ матСматичСского модСлирования Π±Π΅Π·Π΄Π°Ρ‚Ρ‡ΠΈΠΊΠΎΠ²ΠΎΠΉ систСмы Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ управлСния, ΠΏΡ€Π΅Π΄Π½Π°Π·Π½Π°Ρ‡Π΅Π½Π½ΠΎΠΉ для тягового элСктропривода. ΠŸΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ΡΡ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Π°Ρ схСма элСктропривода с Π±Π΅Π·Π΄Π°Ρ‚Ρ‡ΠΈΠΊΠΎΠ²ΠΎΠΉ систСмой Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ управлСния асинхронным ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΎΠ·Π°ΠΌΠΊΠ½ΡƒΡ‚Ρ‹ΠΌ элСктродвигатСлСм. Π”Π°Π½Ρ‹ основныС выраТСния, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Π΅ для оцСнивания ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ… состояния систСмы ΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ².ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΈΠΌΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ матСматичСского модСлирования систСмы элСктропривода для Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π°ΡŽΡ‚ Ρ€Π°Π±ΠΎΡ‚ΠΎΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠΉ систСмы управлСния Π²ΠΎ всСм Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Ρ… ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ²
    corecore