129 research outputs found
Commensurate to incommensurate magnetic phase transition in Honeycomb-lattice pyrovanadate Mn2V2O7
We have synthesized single crystalline sample of MnVO using
floating zone technique and investigated the ground state using magnetic
susceptibility, heat capacity and neutron diffraction. Our magnetic
susceptibility and heat capacity reveal two successive magnetic transitions at
19 K and 11.8 K indicating two distinct magnetically
ordered phases. The single crystal neutron diffraction study shows that in the
temperature () range 11.8 K 19 K the magnetic structure is
commensurate with propagation vector , while upon lowering
temperature below 11.8 K an incommensurate magnetic order emerges
with and the magnetic structure can be represented by
cycloidal modulation of the Mn spin in plane. We are reporting this
commensurate to incommensurate transition for the first time. We discuss the
role of the magnetic exchange interactions and spin-orbital coupling on the
stability of the observed magnetic phase transitions.Comment: 8 pages, 7 figure
SR and Neutron Diffraction Investigations on Reentrant Ferromagnetic Superconductor Eu(Fe{0.86}Ir{0.14})2As2
Results of muon spin relaxation (SR) and neutron powder diffraction
measurements on a reentrant superconductor Eu(FeIr)As
are presented. Eu(FeIr)As exhibits superconductivity
at ~K competing with long range ordered Eu
moments below K. A reentrant behavior (manifested by nonzero
resistivity in the temperature range 10--17.5 K) results from an exquisite
competition between the superconductivity and magnetic order. The zero field
SR data confirm the long range magnetic ordering below K. The transition temperature is found to increase with increasing
magnetic field in longitudinal field SR which along with the neutron
diffraction results, suggests the transition to be ferromagnetic. The neutron
diffraction data reveal a clear presence of magnetic Bragg peaks below which could be indexed with propagation vector k = (0, 0, 0), confirming a
long range magnetic ordering in agreement with SR data. Our analysis of
the magnetic structure reveals an ordered magnetic moment of (at 1.8 K) on the Eu atoms and they form a ferromagnetic structure with
moments aligned along the -axis. No change in the magnetic structure is
observed in the reentrant or superconducting phases and the magnetic structure
remains same for 1.8 K . No clear evidence of
structural transition or Fe moment ordering was found.Comment: 9 pages, 7 figures, to appear in Phys. Rev.
Magnetic order in the frustrated Ising-like chain compound SrNiIrO
We have studied the field and temperature dependence of the magnetization of
single crystals of Sr3NiIrO6. These measurements evidence the presence of an
easy axis of anisotropy and two anomalies in the magnetic susceptibility.
Neutron powder diffraction realized on a polycrystalline sample reveals the
emergence of magnetic reflections below 75 K with magnetic propagation vector k
~ (0, 0, 1), undetected in previous neutron studies [T.N. Nguyen and H.-C zur
Loye, J. Solid State Chem., 117, 300 (1995)]. The nature of the magnetic ground
state, and the presence of two anomalies common to this family of material, are
discussed on the basis of the results obtained by neutron diffraction,
magnetization measurements, and symmetry arguments
First-order multi-k phase transitions and magnetoelectric effects in multiferroic Co3TeO6
A theoretical description of the sequence of magnetic phases in Co3TeO6 is
presented. The strongly first-order character of the transition to the
commensurate multiferroic ground state, induced by coupled order parameters
corresponding to different wavevectors, is related to a large magnetoelastic
effect with an exchange energy critically sensitive to the interatomic spacing.
The monoclinic magnetic symmetry C2' of the multiferroic phase permits
spontaneous polarization and magnetization as well as the linear
magnetoelectric effect. The existence of weakly ferromagnetic domains is
verified experimentally by second harmonic generation measurements
Phase diagram of multiferroic KCuAsO(OD)
The layered compound KCuAsO(OD), comprising distorted kagome
planes of Cu ions, is a recent addition to the family of type-II
multiferroics. Previous zero field neutron diffraction work has found two
helically ordered regimes in \kns, each showing a distinct coupling between the
magnetic and ferroelectric order parameters. Here, we extend this work to
magnetic fields up to ~T using neutron powder diffraction, capacitance,
polarization, and high-field magnetization measurements, hence determining the
phase diagram. We find metamagnetic transitions in both low temperatures
phases around ~T, which neutron powder diffraction reveals
to correspond to a rotation of the helix plane away from the easy plane, as
well as a small change in the propagation vector. Furthermore, we show that the
sign of the ferroelectric polarization is reversible in a magnetic field,
although no change is observed (or expected on the basis of the magnetic
structure) due to the transition at ~T. We finally justify the temperature
dependence of the polarization in both zero-field ordered phases by a symmetry
analysis of the free energy expansion
Spontaneous and induced ferroelectricity in the BiFe1−xScxO3 perovskite ceramics
High-pressure synthesis method allows obtaining single-phase perovskite
BiFe1-xScxO3 ceramics in the entire concentration range. As-prepared compositions with x from 0.30 to 0.55 have the antipolar orthorhombic Pnma structure
but can be irreversible converted into the polar rhombohedral R3c or the polar
orthorhombic Ima2 phase via annealing at ambient pressure. Microstructure
defects and large conductivity of the high-pressure-synthesized ceramics make it
difficult to study and even verify their ferroelectric properties. These obstacles can
be overcome using piezoresponse force microscopy (PFM) addressing ferroelectric behavior inside single grains. Herein, the PFM study of the BiFe1-xScxO3
ceramics (0.30 ≤ x ≤ 0.50) is reported. The annealed samples show a strong PFM
contrast. Switching of domain polarity by an electric field confirms the ferroelectric nature of these samples. The as-prepared BiFe0.5Sc0.5O3 ceramics
demonstrate no piezoresponse in accordance with the antipolar character of the
Pnma phase. However, application of a strong enough electric field induces
irreversible transition to the ferroelectric state. The as-prepared BiFe0.7Sc0.3O3
ceramics show coexistence of ferroelectric and antiferroelectric grains without
poling. It is assumed that mechanical stress caused by the sample polishing can
be also a driving force of phase transformation in these materials alongside
temperature and external electric field.publishe
Gallium Substituted "114" YBaFe4O7: From a ferrimagnetic cluster glass to a cationic disordered spin glass
The study of the ferrites YBaFe4-xGaxO7 shows that the substitution of Ga for
Fe in YBaFe4O7 stabilizes the hexagonal symmetry for 0.40 < x < 0.70, at the
expense of the cubic one. Using combined measurements of a. c. and d. c.
magnetization, we establish that Ga substitution for Fe in YBaFe4O7 leads to an
evolution from a geometrically frustrated spin glass (for x = 0) to a cationic
disorder induced spin glass (x = 0.70). We also find an intermediate narrow
range of doping where the samples are clearly phase separated having small
ferrimagnetic clusters embedded in a spin glass matrix. The origin of the
ferrimagnetic clusters lies in the change in symmetry of the samples from cubic
to hexagonal (and a consequent lifting of the geometrical frustration) as a
result of Ga doping. We also show the presence of exchange bias and domain wall
pinning in these samples. The cause of both these effects can be traced back to
the inherent phase separation present in the samples.Comment: 25 pages, 10 figure
Investigation of ferroelectric behavior of Bi(Fe,Sc)O3 multiferroics using piezoresponse force microscopy
This work was supported by the TUMOCS project that has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 645660
- …