1,075 research outputs found

    Drag and inertia coefficients for horizontally submerged rectangular cylinders in waves and currents

    Get PDF
    The results of an experimental investigation carried out to measure combined wave and current loads on horizontally submerged square and rectangular cylinders are reported in this paper. The wave and current induced forces on a section of the cylinders with breadth-depth (aspect) ratios equal to 1, 0.5, and 0.75 are measured in a wave tank. The maximum value of Keulegan-Carpenter (KC) number obtained in waves alone is about 5 and Reynolds (Re) number ranged from 6.3976103 to 1.186105. The drag (CD) and inertia (CM) coefficients for each cylinder are evaluated using measured sectional wave forces and particle kinematics calculated from linear wave theory. The values of CD and CM obtained for waves alone have already been reported (Venugopal, V., Varyani, K. S., and Barltrop, N. D. P. Wave force coefficients for horizontally submerged rectangular cylinders. Ocean Engineering, 2006, 33, 11-12, 1669-1704) and the coefficients derived in combined waves and currents are presented here. The results indicate that both drag and inertia coefficients are strongly affected by the presenceof the current and show different trends for different cylinders. The values of the vertical component inertia coefficients (CMY) in waves and currents are generally smaller than the inertia coefficients obtained in waves alone, irrespective of the current's magnitude and direction. The results also illustrate the effect of a cylinder's aspect ratio on force coefficients. This study will be useful in the design of offshore structures whose columns and caissons are rectangular sections

    Sensor Management for Tracking in Sensor Networks

    Full text link
    We study the problem of tracking an object moving through a network of wireless sensors. In order to conserve energy, the sensors may be put into a sleep mode with a timer that determines their sleep duration. It is assumed that an asleep sensor cannot be communicated with or woken up, and hence the sleep duration needs to be determined at the time the sensor goes to sleep based on all the information available to the sensor. Having sleeping sensors in the network could result in degraded tracking performance, therefore, there is a tradeoff between energy usage and tracking performance. We design sleeping policies that attempt to optimize this tradeoff and characterize their performance. As an extension to our previous work in this area [1], we consider generalized models for object movement, object sensing, and tracking cost. For discrete state spaces and continuous Gaussian observations, we derive a lower bound on the optimal energy-tracking tradeoff. It is shown that in the low tracking error regime, the generated policies approach the derived lower bound

    Sensor Scheduling for Energy-Efficient Target Tracking in Sensor Networks

    Full text link
    In this paper we study the problem of tracking an object moving randomly through a network of wireless sensors. Our objective is to devise strategies for scheduling the sensors to optimize the tradeoff between tracking performance and energy consumption. We cast the scheduling problem as a Partially Observable Markov Decision Process (POMDP), where the control actions correspond to the set of sensors to activate at each time step. Using a bottom-up approach, we consider different sensing, motion and cost models with increasing levels of difficulty. At the first level, the sensing regions of the different sensors do not overlap and the target is only observed within the sensing range of an active sensor. Then, we consider sensors with overlapping sensing range such that the tracking error, and hence the actions of the different sensors, are tightly coupled. Finally, we consider scenarios wherein the target locations and sensors' observations assume values on continuous spaces. Exact solutions are generally intractable even for the simplest models due to the dimensionality of the information and action spaces. Hence, we devise approximate solution techniques, and in some cases derive lower bounds on the optimal tradeoff curves. The generated scheduling policies, albeit suboptimal, often provide close-to-optimal energy-tracking tradeoffs

    A Web-based GIS for Tourism Administration in Kerala

    Get PDF
    Geographic  Information  systems  are  used  widely  for Tourism  administration  in  several  countries,  but  not especially true in Kerala scenario. This paper attempts to present a GIS model for tourism administration in Kerala. Various  applications  of  Tourism  based  GIS  in  the international  arena  have  been  examined  in  this  paper. Data collected from different sources reveals the present status of Tourism GISs world over. The study focuses on areas where GIS can be applied in Kerala Tourism and gives outputs that can be generated using the proposed model.  Tourism  is  essentially  a  cartographic phenomenon.  In  this  context  this  paper  assumes importance as various devices, both wired and wireless are  increasingly  used  to  accesses  cartographic information.  With  internet  becoming  an  unavoidable component of modern day life, map based information is the need of the hour. A web based GIS will benefit Kerala tourism in the coming years. The model proposed in this paper can act as a foundation for building a web based GIS for Kerala tourism

    Ascorbic acid turnover in the ocular tissues of some fishes

    Get PDF
    The ascorbic acid turnover from the ocular tissues of 11 species of fishes from a culture pond and the river Godavari (Andhra Pradesh, India) has been studied. The free ascorbic acid and ascorbigen contents were more in the case of bottom or deep dwelling fishes and the least in the case of surface living forms, depending upon the light penetration in the area that each species inhabits. The enzymic utilization and ascorbic acid-macromolecule complex varied among the fishes possibly depending upon individual energy requirements and not upon light intensity. No size-related or sex-related variation was observed. No variation was observed between riverine and pond-reared fishes of the same species

    Hybrid Rocket Technology

    Get PDF
    With their unique operational characteristics, hybrid rockets can potentially provide safer, lower-cost avenues for spacecraft and missiles than the current solid propellant and liquid propellant systems. Classical hybrids can be throttled for thrust tailoring, perform in-flight motor shutdown and restart. In classical hybrids, the fuel is stored in the form of a solid grain, requiring only half the feed system hardware of liquid bipropellant engines. The commonly used fuels are benign, nontoxic, and not hazardous to store and transport. Solid fuel grains are not highly susceptible to cracks, imperfections, and environmental temperature and are therefore safer to manufacture, store, transport, and use for launch. The status of development based on the experience of the last few decades indicating the maturity of the hybrid rocket technology is given in brief.Defence Science Journal, 2011, 61(3), pp.193-200, DOI:http://dx.doi.org/10.14429/dsj.61.51

    DRSP : Dimension Reduction For Similarity Matching And Pruning Of Time Series Data Streams

    Get PDF
    Similarity matching and join of time series data streams has gained a lot of relevance in today's world that has large streaming data. This process finds wide scale application in the areas of location tracking, sensor networks, object positioning and monitoring to name a few. However, as the size of the data stream increases, the cost involved to retain all the data in order to aid the process of similarity matching also increases. We develop a novel framework to addresses the following objectives. Firstly, Dimension reduction is performed in the preprocessing stage, where large stream data is segmented and reduced into a compact representation such that it retains all the crucial information by a technique called Multi-level Segment Means (MSM). This reduces the space complexity associated with the storage of large time-series data streams. Secondly, it incorporates effective Similarity Matching technique to analyze if the new data objects are symmetric to the existing data stream. And finally, the Pruning Technique that filters out the pseudo data object pairs and join only the relevant pairs. The computational cost for MSM is O(l*ni) and the cost for pruning is O(DRF*wsize*d), where DRF is the Dimension Reduction Factor. We have performed exhaustive experimental trials to show that the proposed framework is both efficient and competent in comparison with earlier works.Comment: 20 pages,8 figures, 6 Table
    • …
    corecore