35 research outputs found
Fusion excitation function measurement for
Total fusion excitation function has been measured for the reaction of weakly bound 6Li projectile on medium mass 64Ni target at energies near the Coulomb barrier of the system. Online characteristic γ-ray detection method has been used to identify and determine the cross sections of the residues. No suppression of total fusion cross section (σTF) is observed at above barrier energies. But enhancement of measured cross section with respect to the one-dimensional barrier penetration model (1-DBPM) calculation is observed at below barrier energies. The enhancement can not be explained by coupled channels calculation with dominant projectile and target excitations as well as one-neutron stripping reaction
Measurement of fusion excitation function for 7Li+64Ni near the barrier
Total fusion (TF) excitation function has been measured for the system 7Li + 64Ni at the energies near the Coulomb barrier of the system. The evaporation residue (ER) cross sections have been estimated through the online detection of characteristic γ-rays of the ERs. The summed ER cross sections yielding the experimental TF cross section have been compared with the theoretical one dimensional barrier penetration model (1DBPM) prediction. The measured and the model cross sections are very close to each other at above barrier energies. However, an enhancement of the experimental TF cross section with respect to the 1DBPM prediction is observed at below barrier energies. Coupled channels (CC) calculation with inelastic excitations alone could not explain the enhancement. The origin of the enhancement is identified as due to the enhanced population of the αxn channels
Fusion excitation function measurement for 6Li+64Ni at near-barrier energies
Total fusion excitation function has been measured for the reaction of weakly bound 6Li projectile on medium mass 64Ni target at energies near the Coulomb barrier of the system. Online characteristic γ-ray detection method has been used to identify and determine the cross sections of the residues. No suppression of total fusion cross section (σTF) is observed at above barrier energies. But enhancement of measured cross section with respect to the one-dimensional barrier penetration model (1-DBPM) calculation is observed at below barrier energies. The enhancement can not be explained by coupled channels calculation with dominant projectile and target excitations as well as one-neutron stripping reaction
Measurement of fusion excitation function for
Total fusion (TF) excitation function has been measured for the system 7Li + 64Ni at the energies near the Coulomb barrier of the system. The evaporation residue (ER) cross sections have been estimated through the online detection of characteristic γ-rays of the ERs. The summed ER cross sections yielding the experimental TF cross section have been compared with the theoretical one dimensional barrier penetration model (1DBPM) prediction. The measured and the model cross sections are very close to each other at above barrier energies. However, an enhancement of the experimental TF cross section with respect to the 1DBPM prediction is observed at below barrier energies. Coupled channels (CC) calculation with inelastic excitations alone could not explain the enhancement. The origin of the enhancement is identified as due to the enhanced population of the αxn channels