12,930 research outputs found

    Evidence for multiple superconducting gaps in optimally doped BaFe1.87_{1.87}Co0.13_{0.13}As2_{2} from infrared spectroscopy

    Full text link
    We performed combined infrared reflection and ellipsometry measurements of the in-plane optical reponse of single crystals of the pnictide high temperature superconductor BaFe1.87_{1.87}Co0.13_{0.13}As2_{2} with TcT_{c} = 24.5 K. We observed characteristic superconductivity-induced changes which provide evidence for at least three different energy gaps. We show that a BCS-model of isotropic gaps with 2Δ/kBTc\Delta/k_{B}T_{c} of 3.1, 4.7, and 9.2 reproduces the experimental data rather well. We also determine the low-temperature value of the in-plane magnetic penetration depth of 270 nm

    Superfield Approach to (Non-)local Symmetries for One-Form Abelian Gauge Theory

    Full text link
    We exploit the geometrical superfield formalism to derive the local, covariant and continuous Becchi-Rouet-Stora-Tyutin (BRST) symmetry transformations and the non-local, non-covariant and continuous dual-BRST symmetry transformations for the free Abelian one-form gauge theory in four (3+1)(3 + 1)-dimensions (4D) of spacetime. Our discussion is carried out in the framework of BRST invariant Lagrangian density for the above 4D theory in the Feynman gauge. The geometrical origin and interpretation for the (dual-)BRST charges (and the transformations they generate) are provided in the language of translations of some superfields along the Grassmannian directions of the six (4+2) 4 + 2)-dimensional supermanifold parametrized by the four spacetime and two Grassmannian variables.Comment: LaTeX file, 23 page

    Gauge Transformations, BRST Cohomology and Wigner's Little Group

    Full text link
    We discuss the (dual-)gauge transformations and BRST cohomology for the two (1 + 1)-dimensional (2D) free Abelian one-form and four (3 + 1)-dimensional (4D) free Abelian 2-form gauge theories by exploiting the (co-)BRST symmetries (and their corresponding generators) for the Lagrangian densities of these theories. For the 4D free 2-form gauge theory, we show that the changes on the antisymmetric polarization tensor e^{\mu\nu} (k) due to (i) the (dual-)gauge transformations corresponding to the internal symmetry group, and (ii) the translation subgroup T(2) of the Wigner's little group, are connected with each-other for the specific relationships among the parameters of these transformation groups. In the language of BRST cohomology defined w.r.t. the conserved and nilpotent (co-)BRST charges, the (dual-)gauge transformed states turn out to be the sum of the original state and the (co-)BRST exact states. We comment on (i) the quasi-topological nature of the 4D free 2-form gauge theory from the degrees of freedom count on e^{\mu\nu} (k), and (ii) the Wigner's little group and the BRST cohomology for the 2D one-form gauge theory {\it vis-{\`a}-vis} our analysis for the 4D 2-form gauge theory.Comment: LaTeX file, 29 pages, misprints in (3.7), (3.8), (3.9), (3.13) and (4.14)corrected and communicated to IJMPA as ``Erratum'

    Nilpotent Symmetries For Matter Fields In Non-Abelian Gauge Theory: Augmented Superfield Formalism

    Full text link
    In the framework of superfield approach to Becchi-Rouet-Stora-Tyutin (BRST) formalism, the derivation of the (anti-)BRST nilpotent symmetries for the matter fields, present in any arbitrary interacting gauge theory, has been a long-standing problem. In our present investigation, the local, covariant, continuous and off-shell nilpotent (anti-)BRST symmetry transformations for the Dirac fields (ψ,ψˉ)(\psi, \bar\psi) are derived in the framework of the augmented superfield formulation where the four (3+1)(3 + 1)-dimensional (4D) interacting non-Abelian gauge theory is considered on the six (4+2)(4 + 2)-dimensional supermanifold parametrized by the four even spacetime coordinates xμx^\mu and a couple of odd elements (θ\theta and θˉ\bar\theta) of the Grassmann algebra. The requirement of the invariance of the matter (super)currents and the horizontality condition on the (super)manifolds leads to the derivation of the nilpotent symmetries for the matter fields as well as the gauge- and the (anti-)ghost fields of the theory in the general scheme of the augmented superfield formalism.Comment: LaTeX file, 16 pages, printing mistakes in the second paragraph of `Introduction' corrected, a footnote added, these modifications submitted as ``erratum'' to IJMPA in the final for

    Eigenvalue spectrum for single particle in a spheroidal cavity: A Semiclassical approach

    Full text link
    Following the semiclassical formalism of Strutinsky et al., we have obtained the complete eigenvalue spectrum for a particle enclosed in an infinitely high spheroidal cavity. Our spheroidal trace formula also reproduces the results of a spherical billiard in the limit η1.0\eta\to1.0. Inclusion of repetition of each family of the orbits with reference to the largest one significantly improves the eigenvalues of sphere and an exact comparison with the quantum mechanical results is observed upto the second decimal place for kR07kR_{0}\geq{7}. The contributions of the equatorial, the planar (in the axis of symmetry plane) and the non-planar(3-Dimensional) orbits are obtained from the same trace formula by using the appropriate conditions. The resulting eigenvalues compare very well with the quantum mechanical eigenvalues at normal deformation. It is interesting that the partial sum of equatorial orbits leads to eigenvalues with maximum angular momentum projection, while the summing of planar orbits leads to eigenvalues with Lz=0L_z=0 except for L=1. The remaining quantum mechanical eigenvalues are observed to arise from the 3-dimensional(3D) orbits. Very few spurious eigenvalues arise in these partial sums. This result establishes the important role of 3D orbits even at normal deformations.Comment: 17 pages, 7 ps figure

    Magnetic and Transport Properties of Ternary Indides of type R2CoIn8 (R = Ce, Pr and Dy)

    Full text link
    We have synthesized and investigated the magnetic and transport properties of a series of compounds, R2CoIn8 (R = rare earth). Compounds form in single phase with a tetragonal structure (space group P4/mmm, no. 162). The Ce compound shows heavy fermion behavior. The magnetic susceptibility of Pr2CoIn8 shows a marked deviation from the Curie-Weiss behavior at low temperatures, which is attributed to the crystalline electric field effects. Heat capacity and magnetization measurements show that Dy2CoIn8 undergoes a magnetic transition at 17 K and a second transition near 5 K, the latter of which may be due to spin reorientation. Magnetization of this compound shows two metamagnetic transitions approximately at 3.6 T and 8.3 T.Comment: Total 7 pages of text and figure
    corecore