349 research outputs found

    Discovery of a Low-Mass Brown Dwarf Companion of the Young Nearby Star G196-3

    Get PDF
    A substellar-mass object in orbit at about 300 astronomical units (AU) from the young low-mass star G196-3 was detected by direct imaging. Optical and infrared photometry and low- and intermediate-resolution spectroscopy of the faint companion, hereafter referred to as G196-3B, confirms its cool atmosphere and allows its mass to be estimated at 25^{+15}_{-10} Jupiter masses. The separation between both objects and their mass ratio suggest the fragmentation of a collapsing cloud as the most likely origin for G196-3B, but alternatively it could have originated from a proto-planetary disc which has been dissipated. Whatever the formation process was, the young age of the primary star (about 100 Myr) demonstrates that substellar companions can form in short time scales.Comment: Published in Science (13 Nov). One color figur

    Spectroscopy of Hyades L dwarf candidates

    Full text link
    We present the results of photometric, astrometric, and spectroscopic follow-up of L dwarf candidates identified in the Hyades cluster by Hogan et al. (2008). We obtained low-resolution optical spectroscopy with the OSIRIS spectrograph on the Gran Telescopio de Canarias for all 12 L dwarf candidates as well as new J-band imaging for a subsample of eight to confirm their proper motion. We also present mid-infrared photometry from the Wise Field Infrared Survey Explorer (WISE) for the Hyades L and T dwarf candidates and estimate their spectroscopic distances, effective temperatures, and masses. We confirm the cool nature of several L dwarf candidates and confirm astrometrically their membership, bridging the gap between the coolest M dwarfs and the two T dwarfs previously reported in the Hyades cluster. These members represent valuable spectral templates at an age of 625 Myr and slightly super solar metallicity (Fe/H=+0.13). We update the Hyades mass function across the hydrogen-burning limit and in the substellar regime. We confirm a small number numbers of very-low-mass members below ~0.1 Msun belonging to the Hyades cluster.Comment: 12 pages, 7 figures, 3 tables; accepted for publication in MNRA

    VLT X-shooter spectroscopy of the nearest brown dwarf binary

    Full text link
    The aim of the project is to characterise both components of the nearest brown dwarf sytem to the Sun, WISE J104915.57-531906.1 (=Luhman16AB) at optical and near-infrared wavelengths. We obtained high signal-to-noise intermediate-resolution (R~6000-11000) optical (600-1000 nm) and near-infrared (1000-2480nm) spectra of each component of Luhman16AB, the closest brown dwarf binary to the Sun, with the X-Shooter instrument on the Very Large Telescope. We classify the primary and secondary of the Luhman16 system as L6-L7.5 and T0+/-1, respectively, in agreement with previous measurements published in the literature. We present measurements of the lithium pseudo-equivalent widths, which appears of similar strength on both components (8.2+/-1.0 Angstroms and 8.4+/-1.5 Angstroms for the L and T components, respectively). The presence of lithium (Lithium 7) in both components imply masses below 0.06 Msun while comparison with models suggests lower limits of 0.04 Msun. The detection of lithium in the T component is the first of its kind. Similarly, we assess the strength of other alkali lines (e.g. pseudo-equivalent widths of 6-7 Angstroms for RbI and 4-7 Angstroms for CsI) present in the optical and near-infrared regions and compare with estimates for L and T dwarfs. We also derive effective temperatures and luminosities of each component of the binary: -4.66+/-0.08 dex and 1305(+180)(-135) for the L dwarf and -4.68+/-0.13 dex and 1320(+185)(-135) for the T dwarf, respectively. Using our radial velocity determinations, the binary does not appear to belong to any of the well-known moving group. Our preliminary theoretical analysis of the optical and J-band spectra indicates that the L- and T-type spectra can be reproduced with a single temperature and gravity but different relative chemical abundances which impact strongly the spectral energy distribution of L/T transition objects.Comment: 12 pages, 9 figure, 3 tables, accepted to A&

    Temporal changes of the flare activity of Proxima Cen

    Full text link
    We study temporal variations of the emission lines of Halpha, Hepsilon, H and K Ca II, D1 and D2 Na I, 4026 and 5876 A He I in the HARPS spectra of Proxima Centauri across an extended time of 13.2 years, from May 27, 2004, to September 30, 2017. Aims. We analyse the common behaviour and differences in the intensities and profiles of different emission lines in flare and quiet modes of Proxima activity. Methods. We compare the pseudo-equivalent widths (pEW) and profiles of the emission lines in the HARPS high-resolution (R ~ 115,000) spectra observed at the same epochs. Results. All emission lines show variability with a timescale of at least 10 min. The strength of all lines except He I 4026 A correlate with \Halpha. During strong flares the `red asymmetry' appears in the Halpha emission line indicating the infall of hot condensed matter into the chromosphere with velocities greater than 100 km/s disturbing chromospheric layers. As a result, the strength of the Ca II lines anti-correlates with Halpha during strong flares. The He I lines at 4026 and 5876 A appear in the strong flares. The cores of D1 and D2 Na I lines are also seen in emission. During the minimum activity of Proxima Centauri, Ca II lines and Hepsilon almost disappear while the blue part of the Na I emission lines is affected by the absorption in the extending and condensing flows. Conclusions. We see different behaviour of emission lines formed in the flare regions and chromosphere. Chromosphere layers of Proxima Cen are likely heated by the flare events; these layers are cooled in the `non-flare' mode. The self-absorption structures in cores of our emission lines vary with time due to the presence of a complicated system of inward and outward matter flows in the absorbing layers.Comment: 22 pages, 12 Figures, accepted by A

    Binary frequency of planet-host stars at wide separations: A new brown dwarf companion to a planet-host star

    Full text link
    The aim of the project is to improve our knowledge on the multiplicity of planet-host stars at wide physical separations. We cross-matched approximately 6200 square degree area of the Southern sky imaged by the Visible Infrared Survey Telescope for Astronomy (VISTA) Hemisphere Survey (VHS) with the Two Micron All Sky Survey (2MASS) to look for wide common proper motion companions to known planet-host stars. We complemented our astrometric search with photometric criteria. We confirmed spectroscopically the co-moving nature of seven sources out of 16 companion candidates and discarded eight, while the remaining one stays as a candidate. Among these new wide companions to planet-host stars, we discovered a T4.5 dwarf companion at 6.3 arcmin (~9000 au) from HIP70849, a K7V star which hosts a 9 Jupiter mass planet with an eccentric orbit. We also report two new stellar M dwarf companions to one G and one metal-rich K star. We infer stellar and substellar binary frequencies for our complete sample of 37 targets of 5.4+/-3.8% and 2.7+/-2.7% (1 sigma confidence level), respectively, for projected physical separations larger than ~60-160 au assuming the range of distances of planet-host stars (24-75 pc). These values are comparable to the frequencies of non planet-host stars. We find that the period-eccentricity trend holds with a lack of multiple systems with planets at large eccentricities (e > 0.2) for periods less than 40 days. However, the lack of planets more massive than 2.5 Jupiter masses and short periods (<40 days) orbiting single stars is not so obvious due to recent discoveries by ground-based transit surveys and space missions.Comment: Accepted for publication in A&A, 13 pages, 5 figures, 3 tables, optical spectra will be available at CDS Strasbour

    Optical Linear Polarization of Late M- and L-Type Dwarfs

    Full text link
    (Abridged). We report on the linear polarimetric observations in the Johnson I filter of 44 M6-L7.5 ultracool dwarfs (2800-1400 K). Eleven (10 L and 1 M) dwarfs appear to have significant linear polarization (P = 0.2-2.5%). We have compared the M- and L-dwarf populations finding evidence for a larger frequency of high I-band polarization in the coolest objects, supporting the presence of significant amounts of dust in L-dwarfs. The probable polarizing mechanism is related to the presence of heterogeneous dust clouds nonuniformly distributed across the visible photospheres and the asymmetric shape of the objects. In some young ultracool dwarfs, surrounding dusty disks may also yield polarization. For polarimetric detections, a trend for slightly larger polarization from L0 to L6.5 may be present in our data, suggesting changes in the distribution of the grain properties, vertical height of the clouds, metallicity, age, and rotation speed. One of our targets is the peculiar brown dwarf (BD) 2MASS J2244+20 (L6.5), which shows the largest I-band polarization degree. Its origin may lie in a surrounding dusty disk or rather large photospheric dust grains. The M7 young BD CFHT-BD-Tau 4 and the L3.5 field dwarf 2MASS J0036+18 were also observed in the Johnson R filter. Our data support the presence of a circum(sub)stellar disk around the young accreting BD. Our data also support a grain growth in the submicron regime in the visible photosphere of J0036+18 (1900 K). The polarimetric data do not obviously correlate with activity or projected rotational velocity. Three polarized early- to mid-L dwarfs display I-band light curves with amplitudes below 10 mmag.Comment: Accepted for publication in ApJ (March 2005), 35 pages, 5 figure

    2MASS J154043.42-510135.7: a new addition to the 5 pc population

    Full text link
    The aim of the project is to find the stars nearest to the Sun and to contribute to the completion of the stellar and substellar census of the solar neighbourhood. We identified a new late-M dwarf within 5 pc, looking for high proper motion sources in the 2MASS-WISE cross-match. We collected astrometric and photometric data available from public large-scale surveys. We complemented this information with low-resolution optical and near-infrared spectroscopy with instrumentation on the ESO NTT to confirm the nature of our candidate. We also present a high-quality medium-resolution VLT/X-shooter spectrum covering the 400 to 2500 nm wavelength range. We classify this new neighbour as an M7.0±\pm0.5 dwarf using spectral templates from the Sloan Digital Sky Survey and spectral indices. Lithium absorption at 670.8 nm is not detected in the X-shooter spectrum, indicating that the M7 dwarf is older than 600 Myr and more massive than 0.06 M_{\odot}. We also derive a trigonometric distance of 4.4 pc, in agreement with the spectroscopic distance estimate, making 2MASS\,J154043.42-510135.7 the nearest M7 dwarf to the Sun. This trigonometric distance is somewhat closer than the \sim6 pc distance reported by the ALLWISE team, who independently identified this object recently. This discovery represents an increase of 25\% in the number of M7--M8 dwarfs already known at distances closer than 8\,pc from our Sun. We derive a density of ρ\rho\,=\,1.9±\pm0.9×\times103^{-3}\,pc3^{-3} for M7 dwarfs in the 8 pc volume, a value similar to those quoted in the literature. This new ultracool dwarf is among the 50 nearest systems to the Sun, demonstrating that our current knowledge of the stellar census within the 5 pc sample remains incomplete. 2M1540 represents a unique opportunity to search for extrasolar planets around ultracool dwarfs due to its proximity and brightness.Comment: 8 pages, 5 figures. Acepted in Astronomy & Astrophysics (15/05/2005

    The CARMENES search for exoplanets around M dwarfs - Photospheric parameters of target stars from high-resolution spectroscopy

    Full text link
    The new CARMENES instrument comprises two high-resolution and high-stability spectrographs that are used to search for habitable planets around M dwarfs in the visible and near-infrared regime via the Doppler technique. Characterising our target sample is important for constraining the physical properties of any planetary systems that are detected. The aim of this paper is to determine the fundamental stellar parameters of the CARMENES M-dwarf target sample from high-resolution spectra observed with CARMENES. We also include several M-dwarf spectra observed with other high-resolution spectrographs, that is CAFE, FEROS, and HRS, for completeness. We used a {chi}^2 method to derive the stellar parameters effective temperature T_eff, surface gravity log g, and metallicity [Fe/H] of the target stars by fitting the most recent version of the PHOENIX-ACES models to high-resolution spectroscopic data. These stellar atmosphere models incorporate a new equation of state to describe spectral features of low-temperature stellar atmospheres. Since T_eff, log g, and [Fe/H] show degeneracies, the surface gravity is determined independently using stellar evolutionary models. We derive the stellar parameters for a total of 300 stars. The fits achieve very good agreement between the PHOENIX models and observed spectra. We estimate that our method provides parameters with uncertainties of {sigma} T_eff = 51 K, {sigma} log g = 0.07, and {sigma} [Fe/H] = 0.16, and show that atmosphere models for low-mass stars have significantly improved in the last years. Our work also provides an independent test of the new PHOENIX-ACES models, and a comparison for other methods using low-resolution spectra. In particular, our effective temperatures agree well with literature values, while metallicities determined with our method exhibit a larger spread when compared to literature results

    Discovery of a wide companion near the deuterium burning mass limit in the Upper Scorpius association

    Get PDF
    We present the discovery of a companion near the deuterium burning mass limit located at a very wide distance, at an angular separation of 4.6+/-0.1 arcsec (projected distance of ~ 670 AU) from UScoCTIO108, a brown dwarf of the very young Upper Scorpius association. Optical and near-infrared photometry and spectroscopy confirm the cool nature of both objects, with spectral types of M7 and M9.5, respectively, and that they are bona fide members of the association, showing low gravity and features of youth. Their masses, estimated from the comparison of their bolometric luminosities and theoretical models for the age range of the association, are 60+/-20 and 14^{+2}_{-8} MJup, respectively. The existence of this object around a brown dwarf at this wide orbit suggests that the companion is unlikely to have formed in a disk based on current planet formation models. Because this system is rather weakly bound, they did not probably form through dynamical ejection of stellar embryos.Comment: 10 pages, including 4 figures and 2 table
    corecore