5,599 research outputs found

    On the Relevance of Compton Scattering for the Soft X-ray Spectra of Hot DA White Dwarfs

    Get PDF
    We re-examine the effects of Compton scattering on the emergent spectra of hot DA white dwarfs in the soft X-ray range. Earlier studies have implied that sensitive X-ray observations at wavelengths λ<50\lambda < 50 \AA might be capable of probing the flux deficits predicted by the redistribution of electron-scattered X-ray photons toward longer wavelengths. We adopt two independent numerical approaches to the inclusion of Compton scattering in the computation of pure hydrogen atmospheres in hydrostatic equilibrium. One employs the Kompaneets diffusion approximation formalism, while the other uses the cross-sections and redistribution functions of Guilbert. Models and emergent spectra are computed for stellar parameters representative of HZ 43 and Sirius B, and for models with an effective temperature Teff=100000T_{\rm eff} = 100 000 K. The differences between emergent spectra computed for Compton and Thomson scattering cases are completely negligible in the case of both HZ 43 and Sirius B models, and are also negligible for all practical purposes for models with temperatures as high as Teff=100000T_{\rm eff} = 100 000 K. Models of the soft X-ray flux from these stars are instead dominated by uncertainties in their fundamental parameters.Comment: 7 pages, 5 figures, accepted for publication in A&

    On the Detectability of Oxygen X-ray Fluorescence and its Use as a Solar Photospheric Abundance Diagnostic

    Full text link
    Monte Carlo calculations of the O Kalpha line fluoresced by coronal X-rays and emitted just above the temperature minimum region of the solar atmosphere have been employed to investigate the use of this feature as an abundance diagnostic. While quite weak, we estimate line equivalent widths in the range 0.02-0.2 AA, depending on the X-ray plasma temperature. The line remains essentially uncontaminated by blends for coronal temperatures T =< 3e6 K and should be quite observable, with a flux >~ 2 ph/s/arcmin^2. Model calculations for solar chemical mixtures with an O abundance adjusted up and down by a factor of 2 indicate 35-60% changes in O Kalpha line equivalent width, providing a potentially useful O abundance diagnostic. Sensitivity of equivalent width to differences between recently recommended chemical compositions with ``high'' and ``low'' complements of the CNO trio important for interpreting helioseismological observations is less accute, amounting to 20-26% at coronal temperatures T ~< 2e6 K. While still feasible for discriminating between these two mixtures, uncertainties in measured line equivalent widths and in the models used for interpretation would need to be significantly less than 20%. Provided a sensitive X-ray spectrometer with resolving power >= 1000 and suitably well-behaved instrumental profile can be built, X-ray fluorescence presents a viable means for resolving the solar ``oxygen crisis''.Comment: To appear in the Astrophysical Journa

    New Cataclysmic Variable 1RXS J073346.0+261933 in Gemini

    Full text link
    In course of the search for the optical identifications associated with ROSAT X-ray sources we have found a highly variable object with the very unusual long-term behavior, color indices and high X-ray-to-optical flux ratio. We report the archival photometric light curve from the Catalina Sky Survey, optical spectroscopy from RTT150 and time-resolved photometry from Astrotel-Caucasus telescope. The object appears to be the magnetic cataclysmic variable (polar) with orbital period of P=3.20 hr.Comment: 8 pages, 5 figures. Submitted to Astronomy Letter
    corecore