9,063 research outputs found
Pressure on charged domain walls and additional imprint mechanism in ferroelectrics
The impact of free charges on the local pressure on a charged ferroelectric
domain wall produced by an electric field has been analyzed. A general formula
for the local pressure on a charged domain wall is derived considering full or
partial compensation of bound polarization charges by free charges. It is shown
that the compensation can lead to a very strong reduction of the pressure
imposed on the wall from the electric field. In some cases this pressure can be
governed by small nonlinear effects. It is concluded that the free charge
compensation of bound polarization charges can lead to substantial reduction of
the domain wall mobility even in the case when the mobility of free charge
carriers is high. This mobility reduction gives rise to an additional imprint
mechanism which may play essential role in switching properties of
ferroelectric materials. The effect of the pressure reduction on the
compensated charged domain walls is illustrated for the case of 180-degree
ferroelectric domain walls and of 90-degree ferroelectric domain walls with the
head-to-head configuration of the spontaneous polarization vectors.Comment: subm. to PRB. This verion is extended by appendi
Suspensions of supracolloidal magnetic polymers: self-assembly properties from computer simulations
We study self-assembly in suspensions of supracolloidal polymer-like
structures made of crosslinked magnetic particles. Inspired by self-assembly
motifs observed for dipolar hard spheres, we focus on four different topologies
of the polymer-like structures: linear chains, rings, Y-shaped and X-shaped
polymers. We show how the presence of the crosslinkers, the number of beads in
the polymer and the magnetic interparticle interaction affect the structure of
the suspension. It turns out that for the same set of parameters, the rings are
the least active in assembling larger structures, whereas the system of Y- and
especially X-like magnetic polymers tend to form very large loose aggregates
Spin-dependent phenomena and device concepts explored in (Ga,Mn)As
Over the past two decades, the research of (Ga,Mn)As has led to a deeper
understanding of relativistic spin-dependent phenomena in magnetic systems. It
has also led to discoveries of new effects and demonstrations of unprecedented
functionalities of experimental spintronic devices with general applicability
to a wide range of materials. In this article we review the basic material
properties that make (Ga,Mn)As a favorable test-bed system for spintronics
research and discuss contributions of (Ga,Mn)As studies in the general context
of the spin-dependent phenomena and device concepts. Special focus is on the
spin-orbit coupling induced effects and the reviewed topics include the
interaction of spin with electrical current, light, and heat.Comment: 47 pages, 41 figure
The effects of superconductor-stabilizer interfacial resistance on quench of current-carrying coated conductor
We present the results of numerical analysis of a model of normal zone
propagation in coated conductors. The main emphasis is on the effects of
increased contact resistance between the superconducting film and the
stabilizer on the speed of normal zone propagation, the maximum temperature
rise inside the normal zone, and the stability margins. We show that with
increasing contact resistance the speed of normal zone propagation increases,
the maximum temperature inside the normal zone decreases, and stability margins
shrink. This may have an overall beneficial effect on quench protection quality
of coated conductors. We also briefly discuss the propagation of solitons and
development of the temperature modulation along the wire.Comment: To be published in Superconductor Science and Technology. This
preprint contains one animated figure (Fig. 6(a)). when asked whether you
want to play the content, click "Play". Acrobat Reader (Windows and Mac, but
not Linux) will play embedded flash movies. In the printed copy Fig. 6(b)
will show the temperature profile at gamma t=15
Spin Tunneling and Phonon-assisted Relaxation in Mn12-acetate
We present a comprehensive theory of the magnetization relaxation in a
Mn12-acetate crystal in the high-temperature regime (T>1 K), which is based on
phonon-assisted spin tunneling induced by quartic magnetic anisotropy and weak
transverse magnetic fields. The overall relaxation rate as function of the
longitudinal magnetic field is calculated and shown to agree well with
experimental data including all resonance peaks measured so far. The Lorentzian
shape of the resonances, which we obtain via a generalized master equation that
includes spin tunneling, is also in good agreement with recent data. We derive
a general formula for the tunnel splitting energy of these resonances. We show
that fourth-order diagonal terms in the Hamiltonian lead to satellite peaks. A
derivation of the effective linewidth of a resonance peak is given and shown to
agree well with experimental data. In addition, previously unknown spin-phonon
coupling constants are calculated explicitly. The values obtained for these
constants and for the sound velocity are also in good agreement with recent
data. We show that the spin relaxation in Mn12-acetate takes place via several
transition paths of comparable weight. These transition paths are expressed in
terms of intermediate relaxation times, which are calculated and which can be
tested experimentally.Comment: 18 pages, 22 EPS figures, REVTe
Highly asymmetric magnetic domain wall propagation due to coupling to a periodic pinning potential
Magneto-optical microscopy and magnetometry have been used to study
19 magnetization reversal in an ultrathin magnetically soft [Pt/Co]2 ferromagnetic film
20 coupled to an array of magnetically harder [Co/Pt]4 nanodots via a predominantly
21 dipolar interaction across a 3 nm Pt spacer. This interaction generates a spatially
22 periodic pinning potential for domain walls propagating through the continuous
23 magnetic film. When reversing the applied field with respect to the static nanodot
24 array magnetization orientation, strong asymmetries in the wall velocity and switching
25 fields are observed. Asymmetric switching fields mean that the hysteresis of the film is
26 characterized by a large bias field of dipolar origin which is linked to the wall velocity
27 asymmetry. This latter asymmetry, though large at low fields, vanishes at high fields
28 where the domains become round and compact. A field-polarity-controlled transition
29 from dendritic to compact faceted domain structures is also seen at low field and a
30 model is proposed to interpret the transition
On spontaneous scalarization
We study in the physical frame the phenomenon of spontaneous scalarization
that occurs in scalar-tensor theories of gravity for compact objects. We
discuss the fact that the phenomenon occurs exactly in the regime where the
Newtonian analysis indicates it should not. Finally we discuss the way the
phenomenon depends on the equation of state used to describe the nuclear
matter.Comment: 41 pages, RevTex, 10 ps figures, submitted to Phys. Rev.
Systematic study of magnetic linear dichroism and birefringence in (Ga,Mn)As
Magnetic linear dichroism and birefringence in (Ga,Mn)As epitaxial layers is
investigated by measuring the polarization plane rotation of reflected linearly
polarized light when magnetization lies in the plane of the sample. We report
on the spectral dependence of the rotation and ellipticity angles in a broad
energy range of 0.12-2.7 eV for a series of optimized samples covering a wide
range on Mn-dopings and Curie temperatures and find a clear blue shift of the
dominant peak at energy exceeding the host material band gap. These results are
discussed in the general context of the GaAs host band structure and also
within the framework of the k.p and mean-field kinetic-exchange model of the
(Ga,Mn)As band structure. We find a semi-quantitative agreement between
experiment and theory and discuss the role of disorder-induced non-direct
transitions on magneto-optical properties of (Ga,Mn)As.Comment: 18 page
- …