337 research outputs found
Spin orientation of a two-dimensional electron gas by a high-frequency electric field
Coupling of spin states and space motion of conduction electrons due to
spin-orbit interaction opens up possibilities for manipulation of the electron
spins by electrical means. It is shown here that spin orientation of a
two-dimensional electron gas can be achieved by excitation of the carriers with
a linearly polarized high-frequency electric field. In (001)-grown quantum well
structures excitation with in-plane ac electric field induces orientation of
the electron spins along the quantum well normal, with the spin sign and the
magnitude depending on the field polarization.Comment: 5 pages, 1 figur
Electric-field switchable magnetization via the Dzyaloshinskii-Moriya interaction: FeTiO_3 versus BiFeO_3
In this article we review and discuss a mechanism for coupling between
electric polarization and magnetization that can ultimately lead to
electric-field switchable magnetization. The basic idea is that a ferroelectric
distortion in an antiferromagnetic material can "switch on" the
Dzyaloshinskii-Moriya interaction which leads to a canting of the
antiferromagnetic sublattice magnetizations, and thus to a net magnetization.
This magnetization M is coupled to the polarization P via a trilinear free
energy contribution of the form P(M x L), where L is the antiferromagnetic
order parameter. In particular, we discuss why such an invariant is present in
R3c FeTiO_3 but not in the isostructural multiferroic BiFeO_3. Finally, we
construct symmetry groups that in general allow for this kind of
ferroelectrically-induced weak ferromagnetism.Comment: 15 pages, 3 images, to appear in J. Phys: Condens. Matter Focus Issue
on Multiferroic
Origin of magnetoelectric behavior in BiFeO
The magnetoelectric behavior of BiFeO has been explored on the basis of
accurate density functional calculations. The structural, electronic, magnetic,
and ferroelectric properties of BiFeO are predicted correctly without
including strong correlation effect in the calculation. Moreover, the
experimentally-observed elongation of cubic perovskite-like lattice along the
[111] direction is correctly reproduced. At high pressure we predicted a
pressure-induced structural transition and the total energy calculations at
expanded lattice show two lower energy ferroelectric phases, closer in energy
to the ground state phase. Band-structure calculations show that BiFeO will
be an insulator in A- and G-type antiferromagnetic phases and a metal in other
magnetic configurations. Chemical bonding in BiFeO has been analyzed using
various tools and electron localization function analysis shows that
stereochemically active lone-pair electrons at the Bi sites are responsible for
displacements of the Bi atoms from the centro-symmetric to the
noncentrosymmetric structure and hence the ferroelectricity. A large
ferroelectric polarization (88.7 C/cm) is predicted in accordance
with recent experimental findings. The net polarization is found to mainly (
98%) originate from Bi atoms. Moreover the large scatter in experimentally
reported polarization values is due to the large anisotropy in the spontaneous
polarization.Comment: 19 pages, 12 figures, 4 table
Influence of Anomalous Dispersion on Optical Characteristics of Quantum Wells
Frequency dependencies of optical characteristics (reflection, transmission
and absorption of light) of a quantum well are investigated in a vicinity of
interband resonant transitions in a case of two closely located excited energy
levels. A wide quantum well in a quantizing magnetic field directed normally to
the quantum-well plane, and monochromatic stimulating light are considered.
Distinctions between refraction coefficients of barriers and quantum well, and
a spatial dispersion of the light wave are taken into account. It is shown that
at large radiative lifetimes of excited states in comparison with nonradiative
lifetimes, the frequency dependence of the light reflection coefficient in the
vicinity of resonant interband transitions is defined basically by a curve,
similar to the curve of the anomalous dispersion of the refraction coefficient.
The contribution of this curve weakens at alignment of radiative and
nonradiative times, it is practically imperceptible at opposite ratio of
lifetimes . It is shown also that the frequency dependencies similar to the
anomalous dispersion do not arise in transmission and absorption coefficients.Comment: 10 pages, 6 figure
Principals of the theory of light reflection and absorption by low-dimensional semiconductor objects in quantizing magnetic fields at monochromatic and pulse excitations
The bases of the theory of light reflection and absorption by low-dimensional
semiconductor objects (quantum wells, wires and dots) at both monochromatic and
pulse irradiations and at any form of light pulses are developed. The
semiconductor object may be placed in a stationary quantizing magnetic field.
As an example the case of normal light incidence on a quantum well surface is
considered. The width of the quantum well may be comparable to the light wave
length and number of energy levels of electronic excitations is arbitrary. For
Fourier-components of electric fields the integral equation (similar to the
Dyson-equation) and solutions of this equation for some individual cases are
obtained.Comment: 14 page
Impurity breakdown and terahertz luminescence in n-GaN epilayers under external electric field
We report on the observation and experimental studies of impurity breakdown and terahertz luminescence in n-GaN epilayers under external electric field. The terahertz electroluminescence is observed in a wide range of doping levels (at noncompensated donor density from 4.5×10[sup 16] to 3.4×10[sup 18] cm[sup −3]). Spectra of terahertz luminescence and photoconductivity are studied by means of Fourier transform spectrometry. Distinctive features of the spectra can be assigned to intracenter electron transitions between excited and ground states of silicon and oxygen donors and to hot electron transitions to the donor states.Peer reviewe
Determining the nature of faint X-ray sources from the ASCA Galactic center survey
© 2015, Pleiades Publishing, Inc. We present the results of the the identification of six objects from the ASCA Galactic center and Galactic plane surveys: AX J173548-3207, AX J173628-3141, AX J1739.5-2910, AX J1740.4-2856, AX J1740.5-2937, and AX J1743.9-2846. Chandra, XMM-Newton, and XRT/Swift X-ray data have been used to improve the positions of the optical counterparts to these sources. Thereafter, we have carried out a series of spectroscopic observations of the established optical counterparts at the RTT-150 telescope. Analysis of X-ray and optical spectra as well as photometric measurements in a wide wavelength range based on optical and infrared catalogs has allowed the nature of the program sources to be determined. Two X-ray objects have been detected in the error circle of AX J173628-3141: one is a coronally active G star and the other may be a symbiotic star, a red giant with an accreting white dwarf. Three sources (AX J1739.5-2910, AX J1740.5-2937, AX J1743.9-2846) have turned out to be active G-K stars, presumably RS CVn objects, one (AX J1740.4-2856) is an M dwarf, and another one (AX J173548-3207) most likely a low-mass X-ray binary in its low state. The distances and corresponding luminosities of the sources in the soft X-ray band (0.5–10 keV) have been estimated; analysis of deep INTEGRAL Galactic center observations has not revealed a statistically significant flux at energies >20 keV from any of them
Rational solutions of the Sasano system of type
We completely classify the rational solutions of the Sasano system of type
The rational solutions are classified to four classes by the
B\"acklund transformation group.Comment: We believe that the result is correct, but is not interestin
Complete solution of a constrained tropical optimization problem with application to location analysis
We present a multidimensional optimization problem that is formulated and
solved in the tropical mathematics setting. The problem consists of minimizing
a nonlinear objective function defined on vectors over an idempotent semifield
by means of a conjugate transposition operator, subject to constraints in the
form of linear vector inequalities. A complete direct solution to the problem
under fairly general assumptions is given in a compact vector form suitable for
both further analysis and practical implementation. We apply the result to
solve a multidimensional minimax single facility location problem with
Chebyshev distance and with inequality constraints imposed on the feasible
location area.Comment: 20 pages, 3 figure
Влияние механоактивации на состав нефти и характеристики ее фракции, выкипающей выше 500ºС
The pressure effect in the disintegration unit DA-1 on the oil has been investigated. A change in oil composition and indicators characterizing some properties of the residual fraction of direct distillation has been identified.Исследовано влияние давления в дезинтеграционном агрегате ДА-1 на фракционный состав отбензиненной нефти одного из месторождений республики Коми. Определены показатели, характеризующие некоторые свойства остаточных фракций прямой перегонки - гудронов
- …