124 research outputs found
Photon waiting time distributions: a keyhole into dissipative quantum chaos
Open quantum systems can exhibit complex states, which classification and
quantification is still not well resolved. The Kerr-nonlinear cavity,
periodically modulated in time by coherent pumping of the intra-cavity photonic
mode, is one of the examples. Unraveling the corresponding Markovian master
equation into an ensemble of quantum trajectories and employing the recently
proposed calculation of quantum Lyapunov exponents [I.I. Yusipov {\it et al.},
Chaos {\bf 29}, 063130 (2019)], we identify `chaotic' and `regular' regimes
there. In particular, we show that chaotic regimes manifest an intermediate
power-law asymptotics in the distribution of photon waiting times. This
distribution can be retrieved by monitoring photon emission with a
single-photon detector, so that chaotic and regular states can be discriminated
without disturbing the intra-cavity dynamics.Comment: 7 pages, 5 figure
Control of a single-particle localization in open quantum systems
We investigate the possibility to control localization properties of the
asymptotic state of an open quantum system with a tunable synthetic
dissipation. The control mechanism relies on the matching between properties of
dissipative operators, acting on neighboring sites and specified by a single
control parameter, and the spatial phase structure of eigenstates of the system
Hamiltonian. As a result, the latter coincide (or near coincide) with the dark
states of the operators. In a disorder-free Hamiltonian with a flat band, one
can either obtain a localized asymptotic state or populate whole flat and/or
dispersive bands, depending on the value of the control parameter. In a
disordered Anderson system, the asymptotic state can be localized anywhere in
the spectrum of the Hamiltonian. The dissipative control is robust with respect
to an additional local dephasing.Comment: 6 pages, 5 figure
Localization in open quantum systems
In an isolated single-particle quantum system a spatial disorder can induce
Anderson localization. Being a result of interference, this phenomenon is
expected to be fragile in the face of dissipation. Here we show that
dissipation can drive a disordered system into a steady state with tunable
localization properties. This can be achieved with a set of identical
dissipative operators, each one acting non-trivially only on a pair of
neighboring sites. Operators are parametrized by a uniform phase, which
controls selection of Anderson modes contributing to the state. On the
microscopic level, quantum trajectories of a system in a localized steady
regime exhibit intermittent dynamics consisting of long-time sticking events
near selected modes interrupted by jumps between them.Comment: 5 pages, 5 figure
Lyapunov exponents of quantum trajectories beyond continuous measurements
Quantum systems interacting with their environments can exhibit complex
non-equilibrium states that are tempting to be interpreted as quantum analogs
of chaotic attractors. Yet, despite many attempts, the toolbox for quantifying
dissipative quantum chaos remains very limited. In particular, quantum
generalizations of Lyapunov exponent, the main quantifier of classical chaos,
are established only within the framework of continuous measurements. We
propose an alternative generalization which is based on the unraveling of a
quantum master equation into an ensemble of so-called 'quantum jump'
trajectories. These trajectories are not only a theoretical tool but a part of
the experimental reality in the case of quantum optics. We illustrate the idea
by using a periodically modulated open quantum dimer and uncover the transition
to quantum chaos matched by the period-doubling route in the classical limit.Comment: 5 pages, 4 figure
Expression of the guanyl-specific ribonuclease genes in bacillus intermedium and bacillus pumilus is regulated by the PhoP-PhoB two-component signal-transduction system of the PHO regulon of bacillus subtilis
Promoters of the genes of guanyl-specific ribonucleases of Bacillus intermedius (binase) and Bacillus pumilus (RNase Bp) were found to contain sequences homologous to those recognizable by the regulatory protein PhoP in the promoters of the PHO regulon of B. subtilis, as well as regions partially homologous to the binding sites of another regulatory protein, PhoB, in the promoters of the PHO regulon of Escherichia coli. The role of the two-component regulatory systems PhoP-PhoR and PhoB-PhoR in the regulation of expression of the genes of binase and RNase Bp in recombinant strains of B. subtilis and E. coli was studied by using mutant strains. It was established that the expression of these genes in recombinant B. subtilis cells is stringently controlled by the PhoP-PhoR two-component regulatory system, whereas the expression of these genes in E. coli cells is not controlled by the regulatory proteins PhoB or PhoR. Presumably, regulatory systems of the response to phosphate starvation, analogous to the PHO regulon of B. subtilis, also function in other representatives of the genus Bacillus
Expression of guanyl-specific ribonuclease genes of Bacillus intermedium and Bacillus pumilus is regulated by the PhoP-PhoB two-component signal-transduction system of the PHO regulon in recombinant Bacillus subtilis strains
Promoters of the genes of guanyl-specific ribonucleases of Bacillus intermedius (binase) and Bacillus pumilus (RNase Bp) were found to contain sequences homologous to those recognizable by the regulatory protein PhoP in the promoters of the PHO regulon of B. subtilis, as well as regions partially homologous to the binding sites of another regulatory protein, PhoB, in the promoters of the PHO regulon of Escherichia coli. The role of the two-component regulatory systems PhoP-PhoR and PhoB-PhoR in the regulation of expression of the genes of binase and RNase Bp in recombinant strains of B. subtilis and E. coli was studied by using mutant strains. It was established that the expression of these genes in recombinant B. subtilis cells is stringently controlled by the PhoP-PhoR two-component regulatory system, whereas the expression of these genes in E. coli cells is not controlled by the regulatory proteins PhoB or PhoR. Presumably, regulatory systems of the response to phosphate starvation, analogous to the PHO regulon of B. subtilis, also function in other representatives of the genus Bacillus. © 1999 MAHK "Hayka/Interperiodica"
Regulation of extracellular phosphohydrolase biosynthesis in bacilli | Reguliatsiia biosinteza vnekletochnykh fosfogidrolaz u batsill.
Under phosphate-deficient conditions, B. intermedius, B. pumilus, and B. thuringiensis secrete phosphohydrolases, including phosphomono-, phosphodiesterases, and guanyl-specific ribonucleases which cleave RNA molecules to nucleoside-3'-phosphatases. The enzymes are synthesized by phosphate-starved vegetative cells, which is not associated with sporulation. Using B. subtilis strains with mutation in the regulatory protein genes phoP and phoR, it was shown that these proteins regulate expression of B. intermedius, B. pumilus, and B. thuringiensis ribonuclease genes in B. subtilis cells. Genes of heterologous RNAses were activated in recombinant B. subtilis strains simultaneously with its own PHO regulon genes. Presumably a regulatory system homologous to B. subtilis two-component PhoP-PhoR signal transduction system functions in other representatives of the Bacillus genus
Expression of the genes for guanyl-specific ribonucleases from Bacillus intermedius and Bacillus pumilus is regulated by the two component signal transduction system PhoP-PhoR in B. subtilis
Promoters of the genes for guanyl-specific ribonucleases, secreted by B. intermedius (binase) and B. pumilus (Rnase Bp) in phosphate deficient conditions, contain regions similar to appropriate consensus sequences in promoters of the PHO regulated genes of B. subtilis. A number of genes expressed in response to phosphate starvation in B. subtilis are regulated by the two component signal transduction system PhoP-PhoR. Expression of recombinant genes for binase and RNase Bp in B. subtilis strains with mutations in the regulatory protein genes of the PHO regulon was studied. Their expression is strongly regulated by the regulatory proteins of the B. subtilis PHO regulon. Copyright (C) 1999 Federation of European Microbiological Societies
The formation of oxide layers on a titanium surface by irradiation with femtosecond laser pulses
By subjecting technical grade titanium to irradiation with femtosecond laser pulses with highenergy density, we create a microporous nanocrystalline oxide layer with a thickness of ∼50 μm on its surface. The structure and phase composition of the modified surface layers are studied using X-ray diffraction and high-resolution scanning and transmission electron microscopie
Formation of the oxide coating on the titanium surface by multipulse femtosecond laser irradiation
The effect of the femtosecond laser irradiation on the formation of oxide layers on the surface of a commercially pure titanium VT1-0 was studied. The methods of X-ray analysis, scanning electron and transmission electron microscopies were used to study the structural and phase state of oxide layers. As a result of the femtosecond laser irradiation, the porous multi-phase nanocrystalline oxide coating with a thickness of 50 µm is formed on the titanium surfac
- …