14 research outputs found

    Field-asymmetric transverse magnetoresistance in a nonmagnetic quantum-size structure

    Full text link
    A new phenomenon is observed experimentally in a heavily doped asymmetric quantum-size structure in a magnetic field parallel to the quantum-well layers - a transverse magnetoresistance which is asymmetric in the field (there can even be a change in sign) and is observed in the case that the structure has a built-in lateral electric field. A model of the effect is proposed. The observed asymmetry of the magnetoresistance is attributed to an additional current contribution that arises under nonequilibrium conditions and that is linear in the gradient of the electrochemical potential and proportional to the parameter characterizing the asymmetry of the spectrum with respect to the quasimomentum.Comment: 10 pages, 5 figures. For correspondence, mail to [email protected]

    Graphene as a quantum surface with curvature-strain preserving dynamics

    Full text link
    We discuss how the curvature and the strain density of the atomic lattice generate the quantization of graphene sheets as well as the dynamics of geometric quasiparticles propagating along the constant curvature/strain levels. The internal kinetic momentum of Riemannian oriented surface (a vector field preserving the Gaussian curvature and the area) is determined.Comment: 13p, minor correction

    Phonon contribution to electrical resistance of acceptor-doped single-wall carbon nanotubes assembled into transparent films

    No full text
    The electrical resistance of pristine and acceptor-doped single-wall carbon nanotubes assembled into transparent films was measured in the temperature range of 5 to 300 K. The doping was accomplished by filling the nanotubes with iodine or CuCl from the gas phase. After doping the films resistance appeared to drop down by one order of magnitude, to change the nonmonotonic temperature behavior, and to reduce the crossover temperature. The experimental data have been perfectly fitted in frames of the known heterogeneous model with two contributions: from the nanotube bundles (with quasi-one-dimensional conductivity) and from the interbundle electron tunneling. The doping was observed to decrease the magnitudes of both contributions. In this paper we have revealed the main reason of changes in the nanotube part. It is considered to be connected with the involvement of low-energy phonons, which start to participate in the intravalley scattering due to the shift of the Fermi level after doping. The values of the Fermi level shift into the valence band are estimated to be equal to -0.6 eV in the case of iodine doping and -0.9 eV in the case of CuCl doping. These values are in qualitative agreement with the optical absorption data.Peer reviewe
    corecore