513 research outputs found
Fluctuation-Dissipation relations in Driven Granular Gases
We study the dynamics of a 2d driven inelastic gas, by means of Direct
Simulation Monte Carlo (DSMC) techniques, i.e. under the assumption of
Molecular Chaos. Under the effect of a uniform stochastic driving in the form
of a white noise plus a friction term, the gas is kept in a non-equilibrium
Steady State characterized by fractal density correlations and non-Gaussian
distributions of velocities; the mean squared velocity, that is the so-called
{\em granular temperature}, is lower than the bath temperature. We observe that
a modified form of the Kubo relation, which relates the autocorrelation and the
linear response for the dynamics of a system {\em at equilibrium}, still holds
for the off-equilibrium, though stationary, dynamics of the systems under
investigation. Interestingly, the only needed modification to the equilibrium
Kubo relation is the replacement of the equilibrium temperature with an
effective temperature, which results equal to the global granular temperature.
We present two independent numerical experiment, i.e. two different observables
are studied: (a) the staggered density current, whose response to an impulsive
shear is proportional to its autocorrelation in the unperturbed system and (b)
the response of a tracer to a small constant force, switched on at time ,
which is proportional to the mean-square displacement in the unperturbed
system. Both measures confirm the validity of Kubo's formula, provided that the
granular temperature is used as the proportionality factor between response and
autocorrelation, at least for not too large inelasticities.Comment: 11 pages, 7 figures, submitted for publicatio
Rapid and Accurate Identification of Nontuberculous Mycobacteria Directly from Positive Primary MGIT Cultures by MALDI-TOF MS
Over the last years, nontuberculous mycobacteria (NTM) have emerged as important human pathogens. Accurate and rapid mycobacterial species identification is needed to successfully diagnose, treat, and manage infections caused by NTM. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, MALDI-TOF MS, was demonstrated to effectively identify mycobacteria isolates subcultured from solid or liquid media rather than new positive cultures. The present study aims to develop a new extraction protocol to yield rapid and accurate identification of NTM from primary MGIT cultures by MALDI-TOF MS. A total of 60 positive MGIT broths were examined by the Bruker Biotyper system with Mycobacteria Library v. 2.0 (Bruker Daltonics GmbH & Co. KG., Bremen, Germany). The results were compared with those obtained by the molecular method, line probe assay GenoType Mycobacterium CM/AS/NTM-DR. All samples were concordantly identified by MALDI-TOF MS and the molecular test for all the tested mycobacteria. Fifty-seven (95%) MGIT positive cultures for NTM from clinical samples had a MALDI-TOF MS analysis score S â„ 1.8. Although a small number of strains and a limited diversity of mycobacterial species were analysed, our results suggest that MALDI-TOF MS could represent a promising routine diagnostic tool for identifying mycobacterial species directly from primary liquid culture
Attempted density blowup in a freely cooling dilute granular gas: hydrodynamics versus molecular dynamics
It has been recently shown (Fouxon et al. 2007) that, in the framework of
ideal granular hydrodynamics (IGHD), an initially smooth hydrodynamic flow of a
granular gas can produce an infinite gas density in a finite time. Exact
solutions that exhibit this property have been derived. Close to the
singularity, the granular gas pressure is finite and almost constant. This work
reports molecular dynamics (MD) simulations of a freely cooling gas of nearly
elastically colliding hard disks, aimed at identifying the "attempted" density
blowup regime. The initial conditions of the simulated flow mimic those of one
particular solution of the IGHD equations that exhibits the density blowup. We
measure the hydrodynamic fields in the MD simulations and compare them with
predictions from the ideal theory. We find a remarkable quantitative agreement
between the two over an extended time interval, proving the existence of the
attempted blowup regime. As the attempted singularity is approached, the
hydrodynamic fields, as observed in the MD simulations, deviate from the
predictions of the ideal solution. To investigate the mechanism of breakdown of
the ideal theory near the singularity, we extend the hydrodynamic theory by
accounting separately for the gradient-dependent transport and for finite
density corrections.Comment: 11 pages, 9 figures, accepted for publication on Physical Review
Prolyl 3âhydroxylase 2 is a molecular player of angiogenesis
Prolyl 3âhydroxylase 2 (P3H2) catalyzes the postâtranslational formation of 3â hydroxyproline on collagens, mainly on type IV. Its activity has never been directly associated to angiogenesis. Here, we identified P3H2 gene through a deepâsequencing transcriptome analysis of human umbilical vein endothelial cells (HUVECs) stimulated with vascular endothelial growth factor A (VEGFâA). Differently from many previous studies we carried out the stimulation not on starved HUVECs, but on cells grown to maintain the best condition for their in vitro survival and propagation. We showed that P3H2 is induced by VEGFâA in two primary human endothelial cell lines and that its transcription is modulated by VEGFâA/VEGF receptor 2 (VEGFRâ2) signaling pathway through p38 mitogenâactivated protein kinase (MAPK). Then, we demonstrated that P3H2, through its activity on type IV Collagen, is essential for angiogenesis properties of endothelial cells in vitro by performing experiments of gainâ and lossâofâfunction. Immunofluorescence studies showed that the overexpression of P3H2 induced a more condensed status of Collagen IV, accompanied by an alignment of the cells along the Collagen IV bundles, so towards an evident proâangiogenic status. Finally, we found that P3h2 knockdown prevents pathological angiogenesis in vivo, in the model of laserâinduced choroid neovascularization. Together these findings reveal that P3H2 is a new molecular player involved in new vessels formation and could be considered as a potential target for antiâangiogenesis therapy
Non-Gaussian velocity distributions in excited granular matter in the absence of clustering
The velocity distribution of spheres rolling on a slightly tilted rectangular
two dimensional surface is obtained by high speed imaging. The particles are
excited by periodic forcing of one of the side walls. Our data suggests that
strongly non-Gaussian velocity distributions can occur in dilute granular
materials even in the absence of significant density correlations or
clustering. When the surface on which the particles roll is tilted further to
introduce stronger gravitation, the collision frequency with the driving wall
increases and the velocity component distributions approach Gaussian
distributions of different widths.Comment: 4 pages, 5 figures. Additional information at
http://physics.clarku.edu/~akudrolli/nls.htm
A microfluidic method for passive trapping of sperms in microstructures
Sperm motility is a prerequisite for male fertility. Enhancing the concentration of motile sperms in assisted reproductive technologies - for human and animal reproduction - is typically achieved through aggressive methods such as centrifugation. Here, we propose a passive technique for the amplification of motile sperm concentration, with no externally imposed forces or flows. The technique is based on the disparity between probability rates, for motile cells, of entering and escaping from complex structures. The effectiveness of the technique is demonstrated in microfluidic experiments with microstructured devices, comparing the trapping power in different geometries. In these micro-traps, we observe an enhancement of cells' concentration close to 10, with a contrast between motile and non-motile cells increased by a similar factor. Simulations of suitable interacting model sperms in realistic geometries reproduce quantitatively the experimental results, extend the range of observations and highlight the components that are key to the optimal trap design
Self-Therapeutic Cobalt Hydroxide Nanosheets (Co(OH)2NS) for Ovarian Cancer Therapy
High-grade serous ovarian cancer (HGSOC) is one of the major life-threatening cancers in women, with a survival rate of less than 50%. So far, chemotherapy is the main therapeutic tool to cure this lethal disease; however, in many cases, it fails to cure HGSOC even with severe side effects. Self-therapeutic nanomaterials could be an effective alternative to chemotherapy, facilitated by their diverse physicochemical properties and the ability to generate reactive species for killing cancer cells. Herein, inorganic cobalt hydroxide nanosheets (Co(OH)2 NS) were synthesized by a simple solution process at room temperature, and morphological, spectroscopic, and crystallographic analyses revealed the formation of Co(OH)2 NS with good crystallinity and purity. The as-prepared Co(OH)2 NS showed excellent potency, comparable to the FDA-approved cisplatin drug to kill ovarian cancer cells. Flow cytometric analysis (nnexin V) revealed increased cellular apoptosis for Co(OH)2 NS than cobalt acetate (the precursor). Tracking experiments demonstrated that Co(OH)2 NS are internalized through the lysosome pathway, although relocalization in the cytoplasm has been observed. Hence, Co(OH)2 NS could be an effective self-therapeutic drug and open up an area for the optimization of self-therapeutic properties of cobalt nanomaterials for cancer treatment
Fluctuations in granular gases
A driven granular material, e.g. a vibrated box full of sand, is a stationary
system which may be very far from equilibrium. The standard equilibrium
statistical mechanics is therefore inadequate to describe fluctuations in such
a system. Here we present numerical and analytical results concerning energy
and injected power fluctuations. In the first part we explain how the study of
the probability density function (pdf) of the fluctuations of total energy is
related to the characterization of velocity correlations. Two different regimes
are addressed: the gas driven at the boundaries and the homogeneously driven
gas. In a granular gas, due to non-Gaussianity of the velocity pdf or lack of
homogeneity in hydrodynamics profiles, even in the absence of velocity
correlations, the fluctuations of total energy are non-trivial and may lead to
erroneous conclusions about the role of correlations. In the second part of the
chapter we take into consideration the fluctuations of injected power in driven
granular gas models. Recently, real and numerical experiments have been
interpreted as evidence that the fluctuations of power injection seem to
satisfy the Gallavotti-Cohen Fluctuation Relation. We will discuss an
alternative interpretation of such results which invalidates the
Gallavotti-Cohen symmetry. Moreover, starting from the Liouville equation and
using techniques from large deviation theory, the general validity of a
Fluctuation Relation for power injection in driven granular gases is
questioned. Finally a functional is defined using the Lebowitz-Spohn approach
for Markov processes applied to the linear inelastic Boltzmann equation
relevant to describe the motion of a tracer particle. Such a functional results
to be different from injected power and to satisfy a Fluctuation Relation.Comment: 40 pages, 18 figure
Clustering and Non-Gaussian Behavior in Granular Matter
We investigate the properties of a model of granular matter consisting of
Brownian particles on a line subject to inelastic mutual collisions. This model
displays a genuine thermodynamic limit for the mean values of the energy and
the energy dissipation. When the typical relaxation time associated with
the Brownian process is small compared with the mean collision time
the spatial density is nearly homogeneous and the velocity probability
distribution is gaussian. In the opposite limit one has
strong spatial clustering, with a fractal distribution of particles, and the
velocity probability distribution strongly deviates from the gaussian one.Comment: 4 pages including 3 eps figures, LaTex, added references, corrected
typos, minimally changed contents and abstract, to published in
Phys.Rev.Lett. (tentatively on 28th of October, 1998
- âŠ