51 research outputs found

    Alteration of the DNA double helix conformation upon incorporation of mispairs as revealed by energy computations and pathways of point mutations.

    No full text
    To explain biochemical and genetic data on spontaneous nucleotide replacements in nucleic acid biosynthesis all the 8 mispairs in normal tautomeric forms have been considered. Possible B-conformations of DNA fragments containing each of such mispairs incorporated between Watson-Crick pairs have been found using computations of the energy of non-bonded interactions via classical potential functions. These conformations have no reduced interatomic contacts. The values of each dihedral angle of the sugar-phosphate backbone fall within the limits of those of double-helical fragments of B-DNA in crystals. These values differ from those of the corresponding angles for the low-energy polynucleotide conformations consisting of canonical pairs by no more than 30 degrees (except for the fragment with the U:U pair for which the C4'-C3'-O-P angle differs by about 50 degrees). The difference in experimentally observed frequencies of various nucleotide replacements in DNA biosynthesis correlates with the difference in the energy of non-bonded interactions and with the extent of the sugar-phosphate backbone distortion for the fragments containing the mispairs which serve as intermediates for the replacements

    Possible conformations of double-helical polynucleotides containing incorrect base pairs.

    No full text
    Theoretical conformational analysis using classical potential functions has shown the possibility of incorporation of nucleotide mispairs with the bases in normal tautomeric forms into the DNA double helix. Incorrect purine-pyrimidine, purine-purine and pyrimidine-pyrimidine pairs can be incorporated into the double helix existing both in A- and B-conformations. The most energy favourable conformations of fragments containing a mispair have all the dihedral angles of the sugar-phosphate backbone within the limits characteristic of double helices consisting of Watson-Crick nucleotide pairs. Incorporation of mispairs is possible practically without the appearance of reduced interatomic contacts. Mutual position of bases in the incorporated mispair does not differ much from their position at the energy minimum of the corresponding isolated base pairs. Conformational parameters of irregular regions of double-stranded polynucleotides containing G:U, I:A, I:A* (syn) and U:C pairs are presented. Distortion of the sugar-phosphate backbone is the least upon incorporation of the G:U pair. Formation of mispairs in the processes of nucleic acid biosynthesis and spontaneous mutagenesis is discussed
    corecore