33 research outputs found

    ВлияниС энСргСтичСских ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ускоритСля ΠΈ Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠ² двиТущихся с ускорСниСм микрочастиц ΠΊΠ°Ρ€Π±ΠΈΠ΄Π° крСмния Π½Π° ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΠΈ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля

    Get PDF
    This article contains the microparticle accelerator scheme, the methods, and the results of practical study of magnetic field induction and electromagnetic radiation formed during explosion product ionization and energy accumulation during explosive charge detonation, as well as the influence of some process parameters on its change. The purpose of this work is to study the influence of accelerator energy parameters and silicon carbide microparticle sizes on the change in magnetic field induction during their acceleration. The influence of technological parameters on the electrodynamic properties of the ionization process of a complex chemical system, which is condensed EXPLOSIVES, was studied by the developed method based on the Hall effect with the use of the developed semiconductor Hall sensors and a special measuring complex. The average magnetic field induction value is 48 MT. The influence of the energy parameters of the accelerator (explosive charge mass), as well as of the size of microparticles introduced into the explosion products (PV) on the electrodynamic properties of the processes of ionization and acceleration of microparticles was determined by measuring and calculating magnetic field induction. Practical results were obtained and confirmed the particle size influence on the plasma state. With an increase in the particle size from 20 to 100 microns, the induction value increases to 50 MT and decreases sharply with a change in the size from 150 to 300 microns. The obtained dependences are the technological characteristics of the process of processing materials by high-speed flows of microparticles with the use of explosion energy, which can be adjusted to make the process manageable.Π’ настоящСй Ρ€Π°Π±ΠΎΡ‚Π΅ прСдставлСна схСма ускоритСля микрочастиц, ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° ΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ практичСского изучСния ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΠΈ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля ΠΈ элСктромагнитного излучСния, ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΡ…ΡΡ Π² процСссС ΠΈΠΎΠ½ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ² Π²Π·Ρ€Ρ‹Π²Π° ΠΈ кумуляции энСргии ΠΏΡ€ΠΈ ΠΏΠΎΠ΄Ρ€Ρ‹Π²Π΅ заряда Π²Π·Ρ€Ρ‹Π²Ρ‡Π°Ρ‚Ρ‹Ρ… вСщСств (Π’Π’), Π° Ρ‚Π°ΠΊΠΆΠ΅ влияния Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² процСсса Π½Π° Π΅Π΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅. ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹ – ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ влияния энСргСтичСских ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ускоритСля ΠΈ Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠ² микрочастиц ΠΊΠ°Ρ€Π±ΠΈΠ΄Π° крСмния Π½Π° ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΠΈ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля ΠΏΡ€ΠΈ ΠΈΡ… ускорСнии. ИсслСдованиС влияния тСхнологичСских ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Π½Π° элСктродинамичСскиС свойства процСсса ΠΈΠΎΠ½ΠΈΠ·Π°Ρ†ΠΈΠΈ слоТной химичСской систСмы, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΡΠ²Π»ΡΡŽΡ‚ΡΡ кондСнсированныС Π’Π’ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΏΠΎ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ΅, Π² основу ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ эффСкт Π₯ΠΎΠ»Π»Π° с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹Ρ… ΠΏΠΎΠ»ΡƒΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ²Ρ‹Ρ… Π΄Π°Ρ‚Ρ‡ΠΈΠΊΠΎΠ² Π₯ΠΎΠ»Π»Π° ΠΈ ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΈΠ·ΠΌΠ΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ комплСкса. Π‘Ρ€Π΅Π΄Π½Π΅Π΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΠΈ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля составляСт 48 ΠΌΠ’Π». ВлияниС энСргСтичСских ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ускоритСля (массы заряда Π²Π·Ρ€Ρ‹Π²Ρ‡Π°Ρ‚Ρ‹Ρ… вСщСств), Π° Ρ‚Π°ΠΊΠΆΠ΅ Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠ² микрочастиц, Π²Π²ΠΎΠ΄ΠΈΠΌΡ‹Ρ… Π² ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Ρ‹ Π²Π·Ρ€Ρ‹Π²Π° (ΠŸΠ’), Π½Π° элСктродинамичСскиС свойства процСсса ΠΈΠΎΠ½ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΈ Ρ€Π°Π·Π³ΠΎΠ½Π° микрочастиц опрСдСляли ΠΏΠΎ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌ измСрСния ΠΈ расчСтов ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΠΈ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ практичСскиС Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π°ΡŽΡ‚ влияниС Ρ€Π°Π·ΠΌΠ΅Ρ€Π° частиц Π½Π° состояниС ΠΏΠ»Π°Π·ΠΌΡ‹. Π‘ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ΠΌ Ρ€Π°Π·ΠΌΠ΅Ρ€Π° частиц ΠΎΡ‚ 20 Π΄ΠΎ 100 ΠΌΠΊΠΌ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΠΈ растСт Π΄ΠΎ 50 ΠΌΠ’Π» ΠΈ Ρ€Π΅Π·ΠΊΠΎ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ΡΡ с ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ Ρ€Π°Π·ΠΌΠ΅Ρ€Π° ΠΎΡ‚ 150 Π΄ΠΎ 300 ΠΌΠΊΠΌ. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ зависимости ΡΠ²Π»ΡΡŽΡ‚ΡΡ тСхнологичСскими характСристиками процСсса ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² высокоскоростными ΠΏΠΎΡ‚ΠΎΠΊΠ°ΠΌΠΈ микрочастиц с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ энСргии Π²Π·Ρ€Ρ‹Π²Π°, рСгулируя ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ процСсс управляСмым

    The role of IGF-1/GH in the aging process and the development of age-related diseases

    Get PDF
    One of the most important trends in geroscience is the search for the biomechanisms of aging and geroprotective methods. In recent years, more and more attention has been paid to the role of age-related decline in IGF-1 levels; processes that start with a decrease in the activity of the GH/IGF-1 axis. IGF-1 levels correlate differently with many age-associated diseases: diabetes mellitus, cancer, cardiovascular disease. A decrease in the level of IGF-1 and growth hormone in the elderly can contribute to the deterioration of the course of some pathologies, and also have a protective effect in the occurrence of different nosologies. The possibility of slowing down aging with the help of IGF-1 in basic research led to research aimed at studying the possibility of using IGF-1 preparations and growth hormone in clinical practice to slow down aging. We have studied the literature on the Pubmed platform, Scopus for the past 10 years in order to find some new information regarding influence of IGF-1 on aging, about the association between IGF-1 levels and major age-related diseases. We analyzed data of publications on the role of IGF-1 in aging and the development of age-related diseases. The search was carried out using key words: IGF-1, growth hormone, aging, the review included data from more than 60 publications

    ΠœΠžΠ”Π˜Π€Π˜Π¦Π˜Π ΠžΠ’ΠΠΠ˜Π• Π‘Π˜Π›Π£ΠœΠ˜ΠΠžΠ’ ΠΠΠΠžΠšΠžΠœΠŸΠžΠ—Π˜Π’ΠΠ«ΠœΠ˜ ПОРОШКАМИ Π˜ΠΠ’Π•Π ΠœΠ•Π’ΠΠ›Π›Π˜Π”/ΠžΠšΠ‘Π˜Π”, ΠŸΠžΠ›Π£Π§Π•ΠΠΠ«ΠœΠ˜ ΠœΠΠ‘Π’Π‘

    Get PDF
    The process of silumin modifying by introducing nanodispersed powders of intermetalliсs NiAl, FeAl, and composite powders of NiAl / 15% Al2O3 and Si / Al2 O3 obtained by the method of mechanically activated self-propagating high-temperature synthesis (MASHS) with addition of 10% tungsten or copper to increase the density was studied. It is shown that the developed modifier compositions make it possible to increase mechanical properties of silumin and to obtain improved values as compared with standards. The effectiveness of introduction of nanocomposite MASHS powders is explained by their activity due to destruction of the oxide surface film and creation of nonequilibrium state in the surface region during mechanical activation. With the introduction of all modifiers, in addition to the composite powder NiAl / 15 % Al2O3 , ultimate tensile strength of silumin increases. Maximum strength, ductility and hardness are achieved with insertion of MASHS Si/Al2O3 powders and addition of tungsten or copper. The introduction of modifiers containing MASHS powders results in changing in distribution, size and amounts of primary and eutectic silicon and improves homogeneity of silumin metal matrix. The use of tungsten and copper improves assimilability of the introduced modifying powders. ИсслСдован процСсс модифицирования силуминов Π²Π²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ Π² расплав нанодиспСрсных ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠ² ΠΈΠ½Ρ‚Π΅Ρ€ΠΌΠ΅Ρ‚Π°Π»Π»ΠΈΠ΄ΠΎΠ² NiAl, FeAl ΠΈ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠ² NiAl / 15 % Al2O3 ΠΈ Si/Al2O3 , ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ мСханичСски Π°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΡΠ°ΠΌΠΎΡ€Π°ΡΠΏΡ€ΠΎΡΡ‚Ρ€Π°Π½ΡΡŽΡ‰Π΅Π³ΠΎΡΡ высокотСмпСратурного синтСза (ΠœΠΠ‘Π’Π‘), с Π΄ΠΎΠ±Π°Π²ΠΊΠΎΠΉ 10 % Π²ΠΎΠ»ΡŒΡ„Ρ€Π°ΠΌΠ° ΠΈΠ»ΠΈ ΠΌΠ΅Π΄ΠΈ для увСличСния плотности. Показано, Ρ‡Ρ‚ΠΎ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹Π΅ составы ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ‚ΠΎΡ€ΠΎΠ² ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ ΠΏΠΎΠ²Ρ‹ΡΠΈΡ‚ΡŒ мСханичСскиС свойства силумина ΠΈ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ значСния, ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ°ΡŽΡ‰ΠΈΠ΅ Ρ‚Ρ€Π΅Π±ΡƒΠ΅ΠΌΡ‹Π΅ ΠΏΠΎ Π½ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π°ΠΌ. Π­Ρ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ввСдСния Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½Ρ‹Ρ… ΠœΠΠ‘Π’Π‘ ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠ² ΠΎΠ±ΡŠΡΡΠ½ΡΠ΅Ρ‚ΡΡ ΠΈΡ… Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ благодаря Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΡŽ оксидной повСрхностной ΠΏΠ»Π΅Π½ΠΊΠΈ ΠΈ созданию нСравновСсного состояния Π² повСрхностной области Π² процСссС ΠΌΠ΅Ρ…Π°Π½ΠΎΠ°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ. ΠŸΡ€ΠΈ Π²Π²Π΅Π΄Π΅Π½ΠΈΠΈ всСх ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ‚ΠΎΡ€ΠΎΠ², ΠΊΡ€ΠΎΠΌΠ΅ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΠΎΡ€ΠΎΡˆΠΊΠ° NiAl / 15 % Al2O3 , происходит ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ Π²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ сопротивлСния силумина. ΠœΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΏΡ€ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ, ΠΏΠ»Π°ΡΡ‚ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ ΠΈ Ρ‚Π²Π΅Ρ€Π΄ΠΎΡΡ‚ΡŒ Π΄ΠΎΡΡ‚ΠΈΠ³Π°ΡŽΡ‚ΡΡ ΠΏΡ€ΠΈ Π²Π²Π΅Π΄Π΅Π½ΠΈΠΈ ΠœΠΠ‘Π’Π‘ ΠΏΠΎΡ€ΠΎΡˆΠΊΠ° Si/Al2O3 с Π΄ΠΎΠ±Π°Π²ΠΊΠΎΠΉ Π²ΠΎΠ»ΡŒΡ„Ρ€Π°ΠΌΠ° ΠΈΠ»ΠΈ ΠΌΠ΅Π΄ΠΈ. Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ‚ΠΎΡ€ΠΎΠ², содСрТащих ΠœΠΠ‘Π’Π‘ ΠΏΠΎΡ€ΠΎΡˆΠΊΠΈ, ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ измСнСнию Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π° распрСдСлСния, Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠ² ΠΈ количСства ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½ΠΎΠ³ΠΎ ΠΈ эвтСктичСского крСмния ΠΈ ΠΊ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡŽ однородности мСталличСской основы силуминов. ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π²ΠΎΠ»ΡŒΡ„Ρ€Π°ΠΌΠ° ΠΈ ΠΌΠ΅Π΄ΠΈ ΡƒΠ»ΡƒΡ‡ΡˆΠ°Π΅Ρ‚ ΡƒΡΠ²ΠΎΡΠ΅ΠΌΠΎΡΡ‚ΡŒ Π²Π²ΠΎΠ΄ΠΈΠΌΡ‹Ρ… ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠ².
    corecore