33 research outputs found
ΠΠ»ΠΈΡΠ½ΠΈΠ΅ ΡΠ½Π΅ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΡΡΠΊΠΎΡΠΈΡΠ΅Π»Ρ ΠΈ ΡΠ°Π·ΠΌΠ΅ΡΠΎΠ² Π΄Π²ΠΈΠΆΡΡΠΈΡ ΡΡ Ρ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ ΠΌΠΈΠΊΡΠΎΡΠ°ΡΡΠΈΡ ΠΊΠ°ΡΠ±ΠΈΠ΄Π° ΠΊΡΠ΅ΠΌΠ½ΠΈΡ Π½Π° ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΈΠ½Π΄ΡΠΊΡΠΈΠΈ ΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ
This article contains the microparticle accelerator scheme, the methods, and the results of practical study of magnetic field induction and electromagnetic radiation formed during explosion product ionization and energy accumulation during explosive charge detonation, as well as the influence of some process parameters on its change. The purpose of this work is to study the influence of accelerator energy parameters and silicon carbide microparticle sizes on the change in magnetic field induction during their acceleration. The influence of technological parameters on the electrodynamic properties of the ionization process of a complex chemical system, which is condensed EXPLOSIVES, was studied by the developed method based on the Hall effect with the use of the developed semiconductor Hall sensors and a special measuring complex. The average magnetic field induction value is 48 MT. The influence of the energy parameters of the accelerator (explosive charge mass), as well as of the size of microparticles introduced into the explosion products (PV) on the electrodynamic properties of the processes of ionization and acceleration of microparticles was determined by measuring and calculating magnetic field induction. Practical results were obtained and confirmed the particle size influence on the plasma state. With an increase in the particle size from 20 to 100 microns, the induction value increases to 50 MT and decreases sharply with a change in the size from 150 to 300 microns. The obtained dependences are the technological characteristics of the process of processing materials by high-speed flows of microparticles with the use of explosion energy, which can be adjusted to make the process manageable.Π Π½Π°ΡΡΠΎΡΡΠ΅ΠΉ ΡΠ°Π±ΠΎΡΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Π° ΡΡ
Π΅ΠΌΠ° ΡΡΠΊΠΎΡΠΈΡΠ΅Π»Ρ ΠΌΠΈΠΊΡΠΎΡΠ°ΡΡΠΈΡ, ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° ΠΈ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ ΠΈΠ½Π΄ΡΠΊΡΠΈΠΈ ΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ ΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ, ΠΎΠ±ΡΠ°Π·ΡΡΡΠΈΡ
ΡΡ Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΠΈΠΎΠ½ΠΈΠ·Π°ΡΠΈΠΈ ΠΏΡΠΎΠ΄ΡΠΊΡΠΎΠ² Π²Π·ΡΡΠ²Π° ΠΈ ΠΊΡΠΌΡΠ»ΡΡΠΈΠΈ ΡΠ½Π΅ΡΠ³ΠΈΠΈ ΠΏΡΠΈ ΠΏΠΎΠ΄ΡΡΠ²Π΅ Π·Π°ΡΡΠ΄Π° Π²Π·ΡΡΠ²ΡΠ°ΡΡΡ
Π²Π΅ΡΠ΅ΡΡΠ² (ΠΠ), Π° ΡΠ°ΠΊΠΆΠ΅ Π²Π»ΠΈΡΠ½ΠΈΡ Π½Π΅ΠΊΠΎΡΠΎΡΡΡ
ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΠΏΡΠΎΡΠ΅ΡΡΠ° Π½Π° Π΅Π΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅. Π¦Π΅Π»Ρ ΡΠ°Π±ΠΎΡΡ β ΠΈΠ·ΡΡΠ΅Π½ΠΈΠ΅ Π²Π»ΠΈΡΠ½ΠΈΡ ΡΠ½Π΅ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΡΡΠΊΠΎΡΠΈΡΠ΅Π»Ρ ΠΈ ΡΠ°Π·ΠΌΠ΅ΡΠΎΠ² ΠΌΠΈΠΊΡΠΎΡΠ°ΡΡΠΈΡ ΠΊΠ°ΡΠ±ΠΈΠ΄Π° ΠΊΡΠ΅ΠΌΠ½ΠΈΡ Π½Π° ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΈΠ½Π΄ΡΠΊΡΠΈΠΈ ΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ ΠΏΡΠΈ ΠΈΡ
ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠΈ. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π²Π»ΠΈΡΠ½ΠΈΡ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² Π½Π° ΡΠ»Π΅ΠΊΡΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΏΡΠΎΡΠ΅ΡΡΠ° ΠΈΠΎΠ½ΠΈΠ·Π°ΡΠΈΠΈ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ, ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΠ²Π»ΡΡΡΡΡ ΠΊΠΎΠ½Π΄Π΅Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ ΠΠ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΏΠΎ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½ΠΎΠΉ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ΅, Π² ΠΎΡΠ½ΠΎΠ²Ρ ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ ΡΡΡΠ΅ΠΊΡ Π₯ΠΎΠ»Π»Π° Ρ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½ΡΡ
ΠΏΠΎΠ»ΡΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ²ΡΡ
Π΄Π°ΡΡΠΈΠΊΠΎΠ² Π₯ΠΎΠ»Π»Π° ΠΈ ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈΠ·ΠΌΠ΅ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ°. Π‘ΡΠ΅Π΄Π½Π΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΈΠ½Π΄ΡΠΊΡΠΈΠΈ ΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ 48 ΠΌΠ’Π». ΠΠ»ΠΈΡΠ½ΠΈΠ΅ ΡΠ½Π΅ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΡΡΠΊΠΎΡΠΈΡΠ΅Π»Ρ (ΠΌΠ°ΡΡΡ Π·Π°ΡΡΠ΄Π° Π²Π·ΡΡΠ²ΡΠ°ΡΡΡ
Π²Π΅ΡΠ΅ΡΡΠ²), Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠ°Π·ΠΌΠ΅ΡΠΎΠ² ΠΌΠΈΠΊΡΠΎΡΠ°ΡΡΠΈΡ, Π²Π²ΠΎΠ΄ΠΈΠΌΡΡ
Π² ΠΏΡΠΎΠ΄ΡΠΊΡΡ Π²Π·ΡΡΠ²Π° (ΠΠ), Π½Π° ΡΠ»Π΅ΠΊΡΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΏΡΠΎΡΠ΅ΡΡΠ° ΠΈΠΎΠ½ΠΈΠ·Π°ΡΠΈΠΈ ΠΈ ΡΠ°Π·Π³ΠΎΠ½Π° ΠΌΠΈΠΊΡΠΎΡΠ°ΡΡΠΈΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ»ΠΈ ΠΏΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°ΠΌ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΈ ΡΠ°ΡΡΠ΅ΡΠΎΠ² ΠΈΠ½Π΄ΡΠΊΡΠΈΠΈ ΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ. ΠΠΎΠ»ΡΡΠ΅Π½Ρ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠΆΠ΄Π°ΡΡ Π²Π»ΠΈΡΠ½ΠΈΠ΅ ΡΠ°Π·ΠΌΠ΅ΡΠ° ΡΠ°ΡΡΠΈΡ Π½Π° ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ ΠΏΠ»Π°Π·ΠΌΡ. Π‘ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΠ°Π·ΠΌΠ΅ΡΠ° ΡΠ°ΡΡΠΈΡ ΠΎΡ 20 Π΄ΠΎ 100 ΠΌΠΊΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΈΠ½Π΄ΡΠΊΡΠΈΠΈ ΡΠ°ΡΡΠ΅Ρ Π΄ΠΎ 50 ΠΌΠ’Π» ΠΈ ΡΠ΅Π·ΠΊΠΎ ΡΠΌΠ΅Π½ΡΡΠ°Π΅ΡΡΡ Ρ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΡΠ°Π·ΠΌΠ΅ΡΠ° ΠΎΡ 150 Π΄ΠΎ 300 ΠΌΠΊΠΌ. ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΡΠ²Π»ΡΡΡΡΡ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ°ΠΌΠΈ ΠΏΡΠΎΡΠ΅ΡΡΠ° ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² Π²ΡΡΠΎΠΊΠΎΡΠΊΠΎΡΠΎΡΡΠ½ΡΠΌΠΈ ΠΏΠΎΡΠΎΠΊΠ°ΠΌΠΈ ΠΌΠΈΠΊΡΠΎΡΠ°ΡΡΠΈΡ Ρ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΡΠ½Π΅ΡΠ³ΠΈΠΈ Π²Π·ΡΡΠ²Π°, ΡΠ΅Π³ΡΠ»ΠΈΡΡΡ ΠΊΠΎΡΠΎΡΡΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ΄Π΅Π»Π°ΡΡ ΠΏΡΠΎΡΠ΅ΡΡ ΡΠΏΡΠ°Π²Π»ΡΠ΅ΠΌΡΠΌ
The role of IGF-1/GH in the aging process and the development of age-related diseases
One of the most important trends in geroscience is the search for the biomechanisms of aging and geroprotective methods. In recent years, more and more attention has been paid to the role of age-related decline in IGF-1 levels; processes that start with a decrease in the activity of the GH/IGF-1 axis. IGF-1 levels correlate differently with many age-associated diseases: diabetes mellitus, cancer, cardiovascular disease. A decrease in the level of IGF-1 and growth hormone in the elderly can contribute to the deterioration of the course of some pathologies, and also have a protective effect in the occurrence of different nosologies. The possibility of slowing down aging with the help of IGF-1 in basic research led to research aimed at studying the possibility of using IGF-1 preparations and growth hormone in clinical practice to slow down aging. We have studied the literature on the Pubmed platform, Scopus for the past 10 years in order to find some new information regarding influence of IGF-1 on aging, about the association between IGF-1 levels and major age-related diseases. We analyzed data of publications on the role of IGF-1 in aging and the development of age-related diseases. The search was carried out using key words: IGF-1, growth hormone, aging, the review included data from more than 60 publications
ΠΠΠΠΠ€ΠΠ¦ΠΠ ΠΠΠΠΠΠ Π‘ΠΠΠ£ΠΠΠΠΠ ΠΠΠΠΠΠΠΠΠΠΠΠ’ΠΠ«ΠΠ ΠΠΠ ΠΠ¨ΠΠΠΠ ΠΠΠ’ΠΠ ΠΠΠ’ΠΠΠΠΠ/ΠΠΠ‘ΠΠ, ΠΠΠΠ£Π§ΠΠΠΠ«ΠΠ ΠΠΠ‘ΠΠ‘
The process of silumin modifying by introducing nanodispersed powders of intermetalliΡs NiAl, FeAl, and composite powders of NiAl / 15% Al2O3 and Si / Al2 O3 obtained by the method of mechanically activated self-propagating high-temperature synthesis (MASHS) with addition of 10% tungsten or copper to increase the density was studied. It is shown that the developed modifier compositions make it possible to increase mechanical properties of silumin and to obtain improved values as compared with standards. The effectiveness of introduction of nanocomposite MASHS powders is explained by their activity due to destruction of the oxide surface film and creation of nonequilibrium state in the surface region during mechanical activation. With the introduction of all modifiers, in addition to the composite powder NiAl / 15 % Al2O3 , ultimate tensile strength of silumin increases. Maximum strength, ductility and hardness are achieved with insertion of MASHS Si/Al2O3 powders and addition of tungsten or copper. The introduction of modifiers containing MASHS powders results in changing in distribution, size and amounts of primary and eutectic silicon and improves homogeneity of silumin metal matrix. The use of tungsten and copper improves assimilability of the introduced modifying powders.Β ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ ΠΏΡΠΎΡΠ΅ΡΡ ΠΌΠΎΠ΄ΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠΈΠ»ΡΠΌΠΈΠ½ΠΎΠ² Π²Π²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ Π² ΡΠ°ΡΠΏΠ»Π°Π² Π½Π°Π½ΠΎΠ΄ΠΈΡΠΏΠ΅ΡΡΠ½ΡΡ
ΠΏΠΎΡΠΎΡΠΊΠΎΠ² ΠΈΠ½ΡΠ΅ΡΠΌΠ΅ΡΠ°Π»Π»ΠΈΠ΄ΠΎΠ² NiAl, FeAl ΠΈ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΈΠΎΠ½Π½ΡΡ
ΠΏΠΎΡΠΎΡΠΊΠΎΠ² NiAl / 15 % Al2O3 ΠΈ Si/Al2O3 , ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΌΠ΅Ρ
Π°Π½ΠΈΡΠ΅ΡΠΊΠΈ Π°ΠΊΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΡΠ°ΠΌΠΎΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½ΡΡΡΠ΅Π³ΠΎΡΡ Π²ΡΡΠΎΠΊΠΎΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΠΎΠ³ΠΎ ΡΠΈΠ½ΡΠ΅Π·Π° (ΠΠΠ‘ΠΠ‘), Ρ Π΄ΠΎΠ±Π°Π²ΠΊΠΎΠΉ 10 % Π²ΠΎΠ»ΡΡΡΠ°ΠΌΠ° ΠΈΠ»ΠΈ ΠΌΠ΅Π΄ΠΈ Π΄Π»Ρ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΡ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΠΈ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½ΡΠ΅ ΡΠΎΡΡΠ°Π²Ρ ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΎΡΠΎΠ² ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡ ΠΏΠΎΠ²ΡΡΠΈΡΡ ΠΌΠ΅Ρ
Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΡΠΈΠ»ΡΠΌΠΈΠ½Π° ΠΈ ΠΏΠΎΠ»ΡΡΠΈΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ, ΠΏΡΠ΅Π²ΡΡΠ°ΡΡΠΈΠ΅ ΡΡΠ΅Π±ΡΠ΅ΠΌΡΠ΅ ΠΏΠΎ Π½ΠΎΡΠΌΠ°ΡΠΈΠ²Π°ΠΌ. ΠΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π²Π²Π΅Π΄Π΅Π½ΠΈΡ Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠ½ΡΡ
ΠΠΠ‘ΠΠ‘ ΠΏΠΎΡΠΎΡΠΊΠΎΠ² ΠΎΠ±ΡΡΡΠ½ΡΠ΅ΡΡΡ ΠΈΡ
Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡΡ Π±Π»Π°Π³ΠΎΠ΄Π°ΡΡ ΡΠ°Π·ΡΡΡΠ΅Π½ΠΈΡ ΠΎΠΊΡΠΈΠ΄Π½ΠΎΠΉ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠ½ΠΎΠΉ ΠΏΠ»Π΅Π½ΠΊΠΈ ΠΈ ΡΠΎΠ·Π΄Π°Π½ΠΈΡ Π½Π΅ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ Π² ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠ½ΠΎΠΉ ΠΎΠ±Π»Π°ΡΡΠΈ Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΠΌΠ΅Ρ
Π°Π½ΠΎΠ°ΠΊΡΠΈΠ²Π°ΡΠΈΠΈ. ΠΡΠΈ Π²Π²Π΅Π΄Π΅Π½ΠΈΠΈ Π²ΡΠ΅Ρ
ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΎΡΠΎΠ², ΠΊΡΠΎΠΌΠ΅ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΠΎΡΠΎΡΠΊΠ° NiAl / 15 % Al2O3 , ΠΏΡΠΎΠΈΡΡ
ΠΎΠ΄ΠΈΡ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΠ΅ Π²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΡΠΈΠ»ΡΠΌΠΈΠ½Π°. ΠΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΡΠ΅ ΠΏΡΠΎΡΠ½ΠΎΡΡΡ, ΠΏΠ»Π°ΡΡΠΈΡΠ½ΠΎΡΡΡ ΠΈ ΡΠ²Π΅ΡΠ΄ΠΎΡΡΡ Π΄ΠΎΡΡΠΈΠ³Π°ΡΡΡΡ ΠΏΡΠΈ Π²Π²Π΅Π΄Π΅Π½ΠΈΠΈ ΠΠΠ‘ΠΠ‘ ΠΏΠΎΡΠΎΡΠΊΠ° Si/Al2O3 Ρ Π΄ΠΎΠ±Π°Π²ΠΊΠΎΠΉ Π²ΠΎΠ»ΡΡΡΠ°ΠΌΠ° ΠΈΠ»ΠΈ ΠΌΠ΅Π΄ΠΈ. ΠΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΎΡΠΎΠ², ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΡ
ΠΠΠ‘ΠΠ‘ ΠΏΠΎΡΠΎΡΠΊΠΈ, ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠ° ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ, ΡΠ°Π·ΠΌΠ΅ΡΠΎΠ² ΠΈ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π° ΠΏΠ΅ΡΠ²ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΈ ΡΠ²ΡΠ΅ΠΊΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΊΡΠ΅ΠΌΠ½ΠΈΡ ΠΈ ΠΊ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΡ ΠΎΠ΄Π½ΠΎΡΠΎΠ΄Π½ΠΎΡΡΠΈ ΠΌΠ΅ΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΎΡΠ½ΠΎΠ²Ρ ΡΠΈΠ»ΡΠΌΠΈΠ½ΠΎΠ². ΠΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π²ΠΎΠ»ΡΡΡΠ°ΠΌΠ° ΠΈ ΠΌΠ΅Π΄ΠΈ ΡΠ»ΡΡΡΠ°Π΅Ρ ΡΡΠ²ΠΎΡΠ΅ΠΌΠΎΡΡΡ Π²Π²ΠΎΠ΄ΠΈΠΌΡΡ
ΠΌΠΎΠ΄ΠΈΡΠΈΡΠΈΡΡΡΡΠΈΡ
ΠΏΠΎΡΠΎΡΠΊΠΎΠ².