875 research outputs found
Gaudin Model, Bethe Ansatz and Critical Level
We propose a new method of diagonalization of hamiltonians of the Gaudin
model associated to an arbitrary simple Lie algebra, which is based on Wakimoto
modules over affine algebras at the critical level. We construct eigenvectors
of these hamiltonians by restricting certain invariant functionals on tensor
products of Wakimoto modules. In conformal field theory language, the
eigenvectors are given by certain bosonic correlation functions. Analogues of
Bethe ansatz equations naturally appear as Kac-Kazhdan type equations on the
existence of certain singular vectors in Wakimoto modules. We use this
construction to expalain a connection between Gaudin's model and correlation
functions of WZNW models.Comment: 40 pages, postscript-file (references added and corrected
The Dirac Sea
We give an alternate definition of the free Dirac field featuring an explicit
construction of the Dirac sea. The treatment employs a semi-infinite wedge
product of Hilbert spaces. We also show that the construction is equivalent to
the standard Fock space construction.Comment: 7 page
Border Collision Route to Quasiperiodicity: Numerical Investigation and Experimental Confirmation
Numerical studies of higher-dimensional piecewise-smooth systems have recently shown how a torus can arise from a periodic cycle through a special type of border-collision bifurcation. The present article investigates this new route to quasiperiodicity in the two-dimensional piecewise-linear normal form map. We have obtained the chart of the dynamical modes for this map and showed that border-collision bifurcations can lead to the birth of a stable closed invariant curve associated with quasiperiodic or periodic dynamics. In the parameter regions leading to the existence of an invariant closed curve, there may be transitions between an ergodic torus and a resonance torus, but the mechanism of creation for the resonance tongues is distinctly different from that observed in smooth maps. The transition from a stable focus point to a resonance torus may lead directly to a new focus of higher periodicity, e.g., a period-5 focus. This article also contains a discussion of torus destruction via a homoclinic bifurcation in the piecewise-linear normal map. Using a dc-dc converter with two-level control as an example, we report the first experimental verification of the direct transition to quasiperiodicity through a border-collision bifurcation
A note on the relationship between rational and trigonometric solutions of the WDVV equations
Legendre transformations provide a natural symmetry on the space of solutions to the WDVV equations, and more specifically, between different Frobenius manifolds. In this paper a twisted Legendre transformation is constructed between solutions which define the corresponding dual Frobenius manifolds. As an application it is shown that certain trigonometric and rational solutions of the WDVV equations are related by such a twisted Legendre transform
Quantum W-algebras and Elliptic Algebras
We define quantum W-algebras generalizing the results of Reshetikhin and the
second author, and Shiraishi-Kubo-Awata-Odake. The quantum W-algebra associated
to sl_N is an associative algebra depending on two parameters. For special
values of parameters it becomes the ordinary W-algebra of sl_N, or the
q-deformed classical W-algebra of sl_N. We construct free field realizations of
the quantum W-algebras and the screening currents. We also point out some
interesting elliptic structures arising in these algebras. In particular, we
show that the screening currents satisfy elliptic analogues of the Drinfeld
relations in U_q(n^).Comment: 26 pages, AMSLATE
On Vertex Operator Construction of Quantum Affine Algebras
We describe the construction of the quantum deformed affine Lie algebras
using the vertex operators in the free field theory. We prove the Serre
relations for the quantum deformed Borel subalgebras of affine algebras, namely
the case of is considered in detail. We provide some
formulas for generators of affine algebra.Comment: LaTeX, 9 pages; typos corrected, references adde
Kazhdan--Lusztig-dual quantum group for logarithmic extensions of Virasoro minimal models
We derive and study a quantum group g(p,q) that is Kazhdan--Lusztig-dual to
the W-algebra W(p,q) of the logarithmic (p,q) conformal field theory model. The
algebra W(p,q) is generated by two currents and of dimension
(2p-1)(2q-1), and the energy--momentum tensor T(z). The two currents generate a
vertex-operator ideal with the property that the quotient W(p,q)/R is the
vertex-operator algebra of the (p,q) Virasoro minimal model. The number (2 p q)
of irreducible g(p,q)-representations is the same as the number of irreducible
W(p,q)-representations on which acts nontrivially. We find the center of
g(p,q) and show that the modular group representation on it is equivalent to
the modular group representation on the W(p,q) characters and
``pseudocharacters.'' The factorization of the g(p,q) ribbon element leads to a
factorization of the modular group representation on the center. We also find
the g(p,q) Grothendieck ring, which is presumably the ``logarithmic'' fusion of
the (p,q) model.Comment: 52pp., AMSLaTeX++. half a dozen minor inaccuracies (cross-refs etc)
correcte
On indecomposable modules over the Virasoro algebra
It is proved that an indecomposable Harish-Chandra module over the Virasoro
algebra must be (i) a uniformly bounded module, or (ii) a module in Category
, or (iii) a module in Category , or (iv) a module which
contains the trivial module as one of its composition factors.Comment: 5 pages, Latex, to appear in Science in China
Lie superalgebras and irreducibility of A_1^(1)-modules at the critical level
We introduce the infinite-dimensional Lie superalgebra and
construct a family of mappings from certain category of -modules
to the category of A_1^(1)-modules of critical level. Using this approach, we
prove the irreducibility of a family of A_1^(1)-modules at the critical level.
As a consequence, we present a new proof of irreducibility of certain
Wakimoto modules. We also give a natural realizations of irreducible quotients
of relaxed Verma modules and calculate characters of these representations.Comment: 21 pages, Late
Baker-Akhiezer functions and generalised Macdonald-Mehta integrals
For the rational Baker-Akhiezer functions associated with special
arrangements of hyperplanes with multiplicities we establish an integral
identity, which may be viewed as a generalisation of the self-duality property
of the usual Gaussian function with respect to the Fourier transformation. We
show that the value of properly normalised Baker-Akhiezer function at the
origin can be given by an integral of Macdonald-Mehta type and explicitly
compute these integrals for all known Baker-Akhiezer arrangements. We use the
Dotsenko-Fateev integrals to extend this calculation to all deformed root
systems, related to the non-exceptional basic classical Lie superalgebras.Comment: 26 pages; slightly revised version with minor correction
- …