875 research outputs found

    Gaudin Model, Bethe Ansatz and Critical Level

    Full text link
    We propose a new method of diagonalization of hamiltonians of the Gaudin model associated to an arbitrary simple Lie algebra, which is based on Wakimoto modules over affine algebras at the critical level. We construct eigenvectors of these hamiltonians by restricting certain invariant functionals on tensor products of Wakimoto modules. In conformal field theory language, the eigenvectors are given by certain bosonic correlation functions. Analogues of Bethe ansatz equations naturally appear as Kac-Kazhdan type equations on the existence of certain singular vectors in Wakimoto modules. We use this construction to expalain a connection between Gaudin's model and correlation functions of WZNW models.Comment: 40 pages, postscript-file (references added and corrected

    The Dirac Sea

    Full text link
    We give an alternate definition of the free Dirac field featuring an explicit construction of the Dirac sea. The treatment employs a semi-infinite wedge product of Hilbert spaces. We also show that the construction is equivalent to the standard Fock space construction.Comment: 7 page

    Border Collision Route to Quasiperiodicity: Numerical Investigation and Experimental Confirmation

    Get PDF
    Numerical studies of higher-dimensional piecewise-smooth systems have recently shown how a torus can arise from a periodic cycle through a special type of border-collision bifurcation. The present article investigates this new route to quasiperiodicity in the two-dimensional piecewise-linear normal form map. We have obtained the chart of the dynamical modes for this map and showed that border-collision bifurcations can lead to the birth of a stable closed invariant curve associated with quasiperiodic or periodic dynamics. In the parameter regions leading to the existence of an invariant closed curve, there may be transitions between an ergodic torus and a resonance torus, but the mechanism of creation for the resonance tongues is distinctly different from that observed in smooth maps. The transition from a stable focus point to a resonance torus may lead directly to a new focus of higher periodicity, e.g., a period-5 focus. This article also contains a discussion of torus destruction via a homoclinic bifurcation in the piecewise-linear normal map. Using a dc-dc converter with two-level control as an example, we report the first experimental verification of the direct transition to quasiperiodicity through a border-collision bifurcation

    A note on the relationship between rational and trigonometric solutions of the WDVV equations

    Get PDF
    Legendre transformations provide a natural symmetry on the space of solutions to the WDVV equations, and more specifically, between different Frobenius manifolds. In this paper a twisted Legendre transformation is constructed between solutions which define the corresponding dual Frobenius manifolds. As an application it is shown that certain trigonometric and rational solutions of the WDVV equations are related by such a twisted Legendre transform

    Quantum W-algebras and Elliptic Algebras

    Full text link
    We define quantum W-algebras generalizing the results of Reshetikhin and the second author, and Shiraishi-Kubo-Awata-Odake. The quantum W-algebra associated to sl_N is an associative algebra depending on two parameters. For special values of parameters it becomes the ordinary W-algebra of sl_N, or the q-deformed classical W-algebra of sl_N. We construct free field realizations of the quantum W-algebras and the screening currents. We also point out some interesting elliptic structures arising in these algebras. In particular, we show that the screening currents satisfy elliptic analogues of the Drinfeld relations in U_q(n^).Comment: 26 pages, AMSLATE

    On Vertex Operator Construction of Quantum Affine Algebras

    Full text link
    We describe the construction of the quantum deformed affine Lie algebras using the vertex operators in the free field theory. We prove the Serre relations for the quantum deformed Borel subalgebras of affine algebras, namely the case of sl^2\hat{\it sl}_{2} is considered in detail. We provide some formulas for generators of affine algebra.Comment: LaTeX, 9 pages; typos corrected, references adde

    Kazhdan--Lusztig-dual quantum group for logarithmic extensions of Virasoro minimal models

    Full text link
    We derive and study a quantum group g(p,q) that is Kazhdan--Lusztig-dual to the W-algebra W(p,q) of the logarithmic (p,q) conformal field theory model. The algebra W(p,q) is generated by two currents W+(z)W^+(z) and W(z)W^-(z) of dimension (2p-1)(2q-1), and the energy--momentum tensor T(z). The two currents generate a vertex-operator ideal RR with the property that the quotient W(p,q)/R is the vertex-operator algebra of the (p,q) Virasoro minimal model. The number (2 p q) of irreducible g(p,q)-representations is the same as the number of irreducible W(p,q)-representations on which RR acts nontrivially. We find the center of g(p,q) and show that the modular group representation on it is equivalent to the modular group representation on the W(p,q) characters and ``pseudocharacters.'' The factorization of the g(p,q) ribbon element leads to a factorization of the modular group representation on the center. We also find the g(p,q) Grothendieck ring, which is presumably the ``logarithmic'' fusion of the (p,q) model.Comment: 52pp., AMSLaTeX++. half a dozen minor inaccuracies (cross-refs etc) correcte

    On indecomposable modules over the Virasoro algebra

    Full text link
    It is proved that an indecomposable Harish-Chandra module over the Virasoro algebra must be (i) a uniformly bounded module, or (ii) a module in Category O\cal O, or (iii) a module in Category O{\cal O}^-, or (iv) a module which contains the trivial module as one of its composition factors.Comment: 5 pages, Latex, to appear in Science in China

    Lie superalgebras and irreducibility of A_1^(1)-modules at the critical level

    Full text link
    We introduce the infinite-dimensional Lie superalgebra A{\mathcal A} and construct a family of mappings from certain category of A{\mathcal A}-modules to the category of A_1^(1)-modules of critical level. Using this approach, we prove the irreducibility of a family of A_1^(1)-modules at the critical level. As a consequence, we present a new proof of irreducibility of certain Wakimoto modules. We also give a natural realizations of irreducible quotients of relaxed Verma modules and calculate characters of these representations.Comment: 21 pages, Late

    Baker-Akhiezer functions and generalised Macdonald-Mehta integrals

    Get PDF
    For the rational Baker-Akhiezer functions associated with special arrangements of hyperplanes with multiplicities we establish an integral identity, which may be viewed as a generalisation of the self-duality property of the usual Gaussian function with respect to the Fourier transformation. We show that the value of properly normalised Baker-Akhiezer function at the origin can be given by an integral of Macdonald-Mehta type and explicitly compute these integrals for all known Baker-Akhiezer arrangements. We use the Dotsenko-Fateev integrals to extend this calculation to all deformed root systems, related to the non-exceptional basic classical Lie superalgebras.Comment: 26 pages; slightly revised version with minor correction
    corecore