172 research outputs found

    On the finite-size behavior of systems with asymptotically large critical shift

    Full text link
    Exact results of the finite-size behavior of the susceptibility in three-dimensional mean spherical model films under Dirichlet-Dirichlet, Dirichlet-Neumann and Neumann-Neumann boundary conditions are presented. The corresponding scaling functions are explicitly derived and their asymptotics close to, above and below the bulk critical temperature TcT_c are obtained. The results can be incorporated in the framework of the finite-size scaling theory where the exponent λ\lambda characterizing the shift of the finite-size critical temperature with respect to TcT_c is smaller than 1/ν1/\nu, with ν\nu being the critical exponent of the bulk correlation length.Comment: 24 pages, late

    On the Finite-Temperature Generalization of the C-theorem and the Interplay between Classical and Quantum Fluctuations

    Full text link
    The behavior of the finite-temperature C-function, defined by Neto and Fradkin [Nucl. Phys. B {\bf 400}, 525 (1993)], is analyzed within a d -dimensional exactly solvable lattice model, recently proposed by Vojta [Phys. Rev. B {\bf 53}, 710 (1996)], which is of the same universality class as the quantum nonlinear O(n) sigma model in the limit nn\to \infty. The scaling functions of C for the cases d=1 (absence of long-range order), d=2 (existence of a quantum critical point), d=4 (existence of a line of finite temperature critical points that ends up with a quantum critical point) are derived and analyzed. The locations of regions where C is monotonically increasing (which depend significantly on d) are exactly determined. The results are interpreted within the finite-size scaling theory that has to be modified for d=4. PACS number(s): 05.20.-y, 05.50.+q, 75.10.Hk, 75.10.Jm, 63.70.+h, 05.30-d, 02.30Comment: 15 pages LATEX, ioplppt.sty file used, 6 EPS figures. Some changes made in section V (on finite-size scaling interpretation of the results obtained

    Fluctuation - induced forces in critical fluids

    Full text link
    The current knowledge about fluctuation - induced long - ranged forces is summarized. Reference is made in particular to fluids near critical points, for which some new insight has been obtained recently. Where appropiate, results of analytic theory are compared with computer simulations and experiments.Comment: Topical review, 24 pages RevTeX, 6 figure

    First g(2+) measurement on neutron-rich 72 Zn, and the high-velocity transient field technique for radioactive heavy-ion beams

    Get PDF
    The high-velocity transient-field (HVTF) technique was used to measure the g factor of the 2+ state of 72Zn produced as a radioactive beam. The transient-field strength was probed at high velocity in ferromagnetic iron and gadolinium hosts using 76Ge beams. The potential of the HVTF method is demonstrated and the difficulties that need to be overcome for a reliable use of the TF technique with high-Z, high-velocity radioactive beams are revealed. The polarization of K-shell vacancies at high velocity, which shows more than an order of magnitude difference between Z = 20 and Z = 30 is discussed. The g-factor measurement hints at the theoretically predicted transition in the structure of the Zn isotopes near N = 40

    Casimir forces in binary liquid mixtures

    Full text link
    If two ore more bodies are immersed in a critical fluid critical fluctuations of the order parameter generate long ranged forces between these bodies. Due to the underlying mechanism these forces are close analogues of the well known Casimir forces in electromagnetism. For the special case of a binary liquid mixture near its critical demixing transition confined to a simple parallel plate geometry it is shown that the corresponding critical Casimir forces can be of the same order of magnitude as the dispersion (van der Waals) forces between the plates. In wetting experiments or by direct measurements with an atomic force microscope the resulting modification of the usual dispersion forces in the critical regime should therefore be easily detectable. Analytical estimates for the Casimir amplitudes Delta in d=4-epsilon are compared with corresponding Monte-Carlo results in d=3 and their quantitative effect on the thickness of critical wetting layers and on force measurements is discussed.Comment: 34 pages LaTeX with revtex and epsf style, to appear in Phys. Rev.

    Quadrupole Anisotropy in Dihadron Azimuthal Correlations in Central dd++Au Collisions at sNN\sqrt{s_{_{NN}}}=200 GeV

    Full text link
    The PHENIX collaboration at the Relativistic Heavy Ion Collider (RHIC) reports measurements of azimuthal dihadron correlations near midrapidity in dd++Au collisions at sNN\sqrt{s_{_{NN}}}=200 GeV. These measurements complement recent analyses by experiments at the Large Hadron Collider (LHC) involving central pp++Pb collisions at sNN\sqrt{s_{_{NN}}}=5.02 TeV, which have indicated strong anisotropic long-range correlations in angular distributions of hadron pairs. The origin of these anisotropies is currently unknown. Various competing explanations include parton saturation and hydrodynamic flow. We observe qualitatively similar, but larger, anisotropies in dd++Au collisions compared to those seen in pp++Pb collisions at the LHC. The larger extracted v2v_2 values in dd++Au collisions at RHIC are consistent with expectations from hydrodynamic calculations owing to the larger expected initial-state eccentricity compared with that from pp++Pb collisions. When both are divided by an estimate of the initial-state eccentricity the scaled anisotropies follow a common trend with multiplicity that may extend to heavy ion data at RHIC and the LHC, where the anisotropies are widely thought to arise from hydrodynamic flow.Comment: 375 authors, 7 pages, 5 figures. Published in Phys. Rev. Lett. v2 has minor changes to text and figures in response to PRL referee suggestions. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    High-spin States in \u3csup\u3e191, 193\u3c/sup\u3eAu and \u3csup\u3e192\u3c/sup\u3ePt: Evidence for Oblate Deformation and Triaxial Shapes

    Get PDF
    High-spin states of 191, 193Au and 192Pt have been populated in the 186W(11B, xn) and 186W(11B, p4n) reactions, respectively, at a beam energy of 68 MeV and their γ decay was studied using the YRAST Ball detector array at the Wright Nuclear Structure Laboratory at Yale University. The level scheme of 193Au has been extended up to Iπ = 55/2+. New transitions were observed also in 191Au and 192Pt. Particle-plus-Triaxial-Rotor (PTR) and Total Routhian Surface (TRS) calculations were performed to determine the equilibrium deformations of the Au isotopes. The predictions for oblate deformations in these nuclei are in agreement with the experimental data. Development of nonaxial shapes is discussed within the framework of the PTR model
    corecore