4,726 research outputs found
Evolution of Efimov states into the continuum in neutron rich (2n-core) nuclei - A general study
The nuclear three-body system, with two halo neutrons very weakly coupled to a heavy core, is studied to investigate necessary conditions for the occurrence of Efimov states. Extending the analysis to the scattering sector, we find that these states evolve into Feshbach type resonances. This behaviour is very similar to the 20C nucleus in which the occurrence of Efimov states evolving into resonances in the elastic scattering of n?19C system has been investigated in recent publications. This work, thereby, extends the study of the Efimov effect beyond 20C, showing that 32Ne and 38Mg exhibit a very similar dynamical structure. These nuclei are, therefore, also candidates for probing experimentally the Efimov effect. © 2011 Elsevier B.V
Electrooptical Evaluation Techniques of Image Intensifier 'Ibbes - Part I
Passive night vision devices are used for viewing the military targets at low light levels of illuminations during night. In these passive night vision devices, image intensifier tubes areused to amplify scene imagery. The performance of these tubes depends upon electrooptical parameters. The techniques of evaluating these parameters, eg, luminous gain, automatic rightness control and maximum screen luminance, photocathode sensitivity, radiant gain, equivalent background illumination, magnification and distortion, signal-to-noise ratio, veilingglare, screen brightness variation, etc. have been described
Electrooptical Evaluation Techniques of Image Intensifier Tubes-Part I1
In this paper, electrooptical evaluation techniques of image intensifier tubes for some of the important parameters like resolving power, absolute spectral responses of photocathode, spectral response of phosphor screen, modulation transfer function, recovery time, gas grade, and fixed-pattern noise have been described
Efimov states and their Fano resonances in a neutron-rich nucleus
Asymmetric resonances in elastic n+C scattering are attributed to
Efimov states of such neutron-rich nuclei, that is, three-body bound states of
the n+n+C system when none of the pairs is bound or some of them only
weakly bound. By fitting to the general resonance shape described by Fano, we
extract resonance position, width, and the "Fano profile index". While Efimov
states have been discussed extensively in many areas of physics, there is only
one very recent experimental observation in trimers of cesium atoms. The
conjunction that we present of the Efimov and Fano phenomena may lead to
experimental realization in nuclei.Comment: 4 double-column pages, 3 figure
Recommended from our members
Challenges in QCD matter physics --The scientific programme of the Compressed Baryonic Matter experiment at FAIR
Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (sNN= 2.7--4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (μB> 500 MeV), effects of chiral symmetry, and the equation of state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2024, in the context of the worldwide efforts to explore high-density QCD matter
Challenges in QCD matter physics - The Compressed Baryonic Matter experiment at FAIR
Substantial experimental and theoretical efforts worldwide are devoted to
explore the phase diagram of strongly interacting matter. At LHC and top RHIC
energies, QCD matter is studied at very high temperatures and nearly vanishing
net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was
created at experiments at RHIC and LHC. The transition from the QGP back to the
hadron gas is found to be a smooth cross over. For larger net-baryon densities
and lower temperatures, it is expected that the QCD phase diagram exhibits a
rich structure, such as a first-order phase transition between hadronic and
partonic matter which terminates in a critical point, or exotic phases like
quarkyonic matter. The discovery of these landmarks would be a breakthrough in
our understanding of the strong interaction and is therefore in the focus of
various high-energy heavy-ion research programs. The Compressed Baryonic Matter
(CBM) experiment at FAIR will play a unique role in the exploration of the QCD
phase diagram in the region of high net-baryon densities, because it is
designed to run at unprecedented interaction rates. High-rate operation is the
key prerequisite for high-precision measurements of multi-differential
observables and of rare diagnostic probes which are sensitive to the dense
phase of the nuclear fireball. The goal of the CBM experiment at SIS100
(sqrt(s_NN) = 2.7 - 4.9 GeV) is to discover fundamental properties of QCD
matter: the phase structure at large baryon-chemical potentials (mu_B > 500
MeV), effects of chiral symmetry, and the equation-of-state at high density as
it is expected to occur in the core of neutron stars. In this article, we
review the motivation for and the physics programme of CBM, including
activities before the start of data taking in 2022, in the context of the
worldwide efforts to explore high-density QCD matter.Comment: 15 pages, 11 figures. Published in European Physical Journal
Nuclear matter at high density: Phase transitions, multiquark states, and supernova outbursts
Phase transition from hadronic matter to quark-gluon matter is discussed for
various regimes of temperature and baryon number density. For small and medium
densities, the phase transition is accurately described in the framework of the
Field Correlation Method, whereas at high density predictions are less certain
and leave room for the phenomenological models. We study formation of
multiquark states (MQS) at zero temperature and high density. Relevant MQS
components of the nuclear matter can be described using a previously developed
formalism of the quark compound bags (QCB).
Partial-wave analysis of nucleon-nucleon scattering indicates the existence
of 6QS which manifest themselves as poles of -matrix. In the framework of
the QCB model, we formulate a self-consistent system of coupled equations for
the nucleon and 6QS propagators in nuclear matter and the G-matrix. The
approach provides a link between high-density nuclear matter with the MQS
components and the cumulative effect observed in reactions on the nuclei, which
requires the admixture of MQS in the wave functions of nuclei kinematically.
6QS determine the natural scale of the density for a possible phase
transition into the MQS phase of nuclear matter. Such a phase transition can
lead to dynamic instability of newly born protoneutron stars and dramatically
affect the dynamics of supernovae. Numerical simulations show that the phase
transition may be a good remedy for the triggering supernova explosions in the
spherically symmetric supernova models. A specific signature of the phase
transition is an additional neutrino peak in the neutrino light curve. For a
Galactic core-collapse supernova, such a peak could be resolved by the present
neutrino detectors. The possibility of extracting the parameters of the phase
of transition from observation of the neutrino signal is discussed also.Comment: 57 pages, 22 figures, 7 tables; RevTeX 4; submitted to Phys. Atom.
Nuc
Recommended from our members
Search for lepton-flavour-violating decays of Higgs-like bosons.
A search is presented for a Higgs-like boson with mass in the range 45 to 195 GeV/c2 decaying into a muon and a tau lepton. The dataset consists of proton-proton interactions at a centre-of-mass energy of 8 TeV , collected by the LHCb experiment, corresponding to an integrated luminosity of 2 fb-1 . The tau leptons are reconstructed in both leptonic and hadronic decay channels. An upper limit on the production cross-section multiplied by the branching fraction at 95% confidence level is set and ranges from 22 pb for a boson mass of 45 GeV/c2 to 4 pb for a mass of 195 GeV/c2
Centrality and Transverse Momentum Dependence of Elliptic Flow of Multistrange Hadrons and \u3cem\u3eϕ\u3c/em\u3e Meson in Au + Au Collisions at √\u3cem\u3e\u3csup\u3es\u3c/sup\u3e\u3csub\u3eNN\u3c/sub\u3e\u3c/em\u3e = 200 GeV
We present high precision measurements of elliptic flow near midrapidity (|y| \u3c 1.0) for multistrange hadrons and ϕ meson as a function of centrality and transverse momentum in Au + Au collisions at center of mass energy √sNN = 200 GeV. We observe that the transverse momentum dependence of ϕ and Ω υ2 is similar to that of π and p, respectively, which may indicate that the heavier strange quark flows as strongly as the lighter up and down quarks. This observation constitutes a clear piece of evidence for the development of partonic collectivity in heavy-ion collisions at the top RHIC energy. Number of constituent quark scaling is found to hold within statistical uncertainty for both 0%–30% and 30%–80% collision centrality. There is an indication of the breakdown of previously observed mass ordering between ϕ and proton υ2 at low transverse momentum in the 0%–30% centrality range, possibly indicating late hadronic interactions affecting the proton υ2
- …