75 research outputs found

    Biochemical marker studies in tissue cultured and naturally growing plants of Asclepias curassavica (L)

    Get PDF
    ABSTRACT In the present study, the genetic stability of in vitro propagate

    Noise Mapping and Variance of Road Traffic Noise: Identification of Most Noise Impacting Vehicular Type in an Urban Region

    Get PDF
    Urban road traffic noise is a major concern in developing as well as developed countries. Often it is difficult to identify the most noise impacting vehicular type especially in urban region with mixed vehicular flow. Herein, we analysed in a systematic way to identify the most noise impacting vehicular type at Hyderabad city of India. The road traffic noise across the corridor-3 metro line known as the blue line metro was chosen in the present study because, it stretches from north to south connecting 23 stations comprising major residential and commercial locations of the city. The noise levels were analysed as per CPCB guidelines. The noise pollution quantifying parameters such as Noise Climate (NC), Noise Pollution Level (LNP), and Traffic Noise Index (TNI) were analysed across the lane. A systematic analysis revealed that, the twowheelers are the most noise impacting vehicles in the daytime whereas four-wheelers in the nighttime. Noise map generated using the IDW spatial interpolation method shows the noise impacted regions across the metro lane stretching ~27 km of the city. The methodological pattern in the present investigation can be useful tool in identifying the most noise impacting vehicular type in any region with a mixed vehicular flow

    Spatial and temporal analysis of haemorrhagic septicaemia outbreaks in India over three decades (1987–2016)

    Get PDF
    Haemorrhagic septicaemia (HS) is an economically important disease affecting cattle and buffaloes and the livelihoods of small-holder farmers that depend upon them. The disease is caused by Gram-negative bacterium, Pasteurella multocida, and is considered to be endemic in many states of India with more than 25,000 outbreaks in the past three decades. Currently, there is no national policy for control of HS in India. In this study, we analysed thirty year (1987–2016) monthly data on HS outbreaks using different statistical and mathematical methods to identify spatial variability and temporal patterns (seasonality, periodicity). There was zonal variation in the trend and seasonality of HS outbreaks. Overall, South zone reported maximum proportion of the outbreaks (70.2%), followed by East zone (7.2%), Central zone (6.4%), North zone (5.6%), West zone (5.5%) and North-East zone (4.9%). Annual state level analysis indicated that the reporting of HS outbreaks started at different years independently and there was no apparent transmission between the states. The results of the current study are useful for the policy makers to design national control programme on HS in India and implement state specific strategies. Further, our study and strategies could aid in implementation of similar approaches in HS endemic tropical countries around the world

    A thirty-year time series analyses identifies coherence between oscillations in anthrax outbreaks and El Niño in Karnataka, India

    Get PDF
    Anthrax is an economically important zoonotic disease affecting both livestock and humans. The disease is caused by a spore forming bacterium, Bacillus anthracis, and is considered endemic to the state of Karnataka, India. It is critical to quantify the role of climatic factors in determining the temporal pattern of anthrax outbreaks, so that reliable forecasting models can be developed. These models will aid in establishing public health surveillance and guide strategic vaccination programs, which will reduce the economic loss to farmers, and prevent the spill-over of anthrax from livestock to humans. In this study, correlation and coherence between time series of anthrax outbreaks in livestock (1987–2016) and meteorological variables and Sea Surface Temperature anomalies (SST) were identified using a combination of cross-correlation analyses, spectral analyses (wavelets and empirical mode decomposition) and further quantified using a Bayesian time series regression model accounting for temporal autocorrelation. Monthly numbers of anthrax outbreaks were positively associated with a lagged effect of rainfall and wet day frequency. Long-term periodicity in anthrax outbreaks (approximately 6–8 years) was coherent with the periodicity in SST anomalies and outbreak numbers increased with decrease in SST anomalies. These findings will be useful in planning long-term anthrax prevention and control strategies in Karnataka state of India

    Virological, immunological and pathological findings of transplacentally transmitted bluetongue virus serotype 1 in IFNAR1-blocked mice during early and mid gestation

    Get PDF
    © 2020, The Author(s). Transplacental transmission (TPT) of wild-type Indian BTV-1 had never been experimentally proved. This study was first time investigated TPT of Indian BTV-1 (isolated from aborted and stillborn goat fetal spleens). The sequential pathology, virological and immune cell kinetics (CD4+, CD8+ T-lymphocytes and NK cells in spleen and PBMCs), and apoptosis in IFNAR1-blocked pregnant mice during early (infected on 1 GD) and mid (infected on 8 GD) gestation have been studied. There was higher rate of TPT during mid stage (71.43%) than early (57.14%) stage. In early stage reduced implantation sites, early embryonic deaths, abortions, and necro-haemorrhagic lesions had observed. Mid stage, congenital defects and neurological lesions in foetuses like haemorrhages, diffuse cerebral edema, necrotizing encephalitis and decreased bone size (Alizarin red staining) were noticed. BTV-1 antigen was first time demonstrable in cells of mesometrium, decidua of embryos, placenta, uterus, ovary, and brain of foetuses by immunohistochemistry and quantified by real-time qRT-PCR. BTV-inoculated mice were seroconverted by 7 and 5 dpi, and reached peak levels by 15 and 9 dpi in early and mid gestation, respectively. CD4+ and CD8+ cells were significantly decreased (increased ratio) on 7 dpi but subsequently increased on 15 dpi in early gestation. In mid gestation, increased CD8+ cells (decreased ratio) were observed. Apoptotic cells in PBMCs and tissues increased during peak viral load. This first time TPT of wild-type Indian BTV-1 deserves to be reported for implementation of control strategies. This model will be very suitable for further research into mechanisms of TPT, overwintering, and vaccination strategies

    Determination of tangential momentum accommodation coefficient and slip coefficients for rarefied gas flow in a microchannel

    No full text
    This paper presents an experimental study of rarefied gas flow in a trapezoidal microchannel with a constant depth of 103 mu m, top width of 1143 mu m, bottom width of 998 mu m and length of 2 cm. The aim of the study is to verify the upper limit of the validity of the second-order slip boundary condition to model rarefied gas flows. The slip coefficients and the tangential momentum accommodation coefficient (TMAC) are determined for three different gases, viz. argon, nitrogen and oxygen, and it is observed that they compare well to the literature values. The range of mean Knudsen number (Kn(m)) investigated is 0.007-1.2. The non-dimensional mass flow rate exhibits the well-known Knudsen minimum in the transition regime (Kn(m) similar to 1). It is seen that the Navier-Stokes equation with a second-order boundary condition fits the data satisfactorily with a high value of correlation coefficient (r(2) > 99.95%) in the entire range of Kn(m) investigated. This work contributes by extending the range of Knudsen number studied in the context of validity of the second-order slip boundary condition

    Liquid and gas flows in microchannels of varying cross section: a comparative analysis of the flow dynamics and design perspectives

    No full text
    This paper presents a comparative study of the flow of liquid and gases in microchannels of converging and diverging cross sections. Towards this, the static pressure across the microchannels is measured for different flow rates of the two fluids. The study includes both experimental and numerical investigations, thus providing several useful insights into the local information of flow parameters as well. Three different microchannels of varying angles of convergence/divergence (4 degrees, 8 degrees and 12 degrees) are studied to understand the effect of the angle on flow properties such as pressure drop, Poiseuille number and diodicity. A comparison of the forces involved in liquid and gas flows shows their relative significance and effect on the flow structure. A diodic effect corresponds to a difference in the flow resistance in a microchannel of varying cross section, when the flow is subjected alternatively to converging and diverging orientations. In the present experiments, the diodic effect is observed for both liquid and gas as working fluids. The effect of governing parameters-Reynolds number and Knudsen number, on the diodicity is analysed. Based on these results, a comparison of design perspectives that may be useful in the design of converging/diverging microchannels for liquid and gas flows is provided

    Investigation of rarefied gas flow in microchannels of non-uniform cross section

    No full text
    Study of rarefied gas flow in converging and diverging cross sections is crucial to the development of micro-nozzles and micro-thrusters. In other practical cases too, a microchannel may not always be straight and may include diverging and converging sections in the flow path. In this context, isothermal rarefied gas flow in microchannels of longitudinally varying cross section is studied experimentally in this work. The primary objective is to investigate the existence of Knudsen minimum in microchannels of varying cross sections. The effect of geometrical cross section and fluid properties on the Knudsen minimum are also investigated by performing experiments on three divergence angles (4 degrees, 8 degrees, and 12 degrees) and three different gases (argon, nitrogen, and oxygen) to prove the robustness of the result. The Knudsen minimum, which is one of the characteristic features of rarefied flows, is experimentally observed for the first time in a microchannel of varying cross section. The position of the Knudsen minimum (at Kn approximate to 1) is seen to depend only weakly on the divergence angle and fluid properties. (C) 2016 AIP Publishing LLC
    corecore