1,757 research outputs found

    The impact of a young radio galaxy : Clues from the cosmic ray electron population

    Get PDF
    In the framework of hierarchical structure formation, active galactic nuclei (AGN) feedback shapes the galaxy luminosity function. Low luminosity, galaxy-scale double radio sources are ideal targets to investigate the interplay between AGN feedback and star formation. We use Very Large Array and BIMA millimetre-wave array observations to study the radio continuum emission of NGC 3801 between 1.4 and 112.4 GHz. We find a prominent spectral break at 10 GHz, where the spectrum steepens as expected from cosmic ray electron (CRe) ageing. Using the equipartition magnetic field and fitting JP models locally, we create a spatially resolved map of the spectral age of the CRe population. The spectral age of τint =2.0±0.2Myr agrees within a factor of 2 with the dynamical age of the expanding X-ray emitting shells. The spectral age varies only little across the lobes, requiring an effective mixing process of the CRe such as a convective backflow of magnetized plasma. The jet termination points have a slightly younger CRe spectral age, hinting at in situ CRe re-acceleration. Our findings support the scenario where the supersonically expanding radio lobes heat the interstellar medium (ISM) of NGC 3801 via shock waves, and, as their energy is comparable to the energy of the ISM, are clearly able to influence the galaxy's further evolution.Peer reviewe

    Extreme Ultraviolet Emission in the Fornax Cluster of Galaxies

    Get PDF
    We present studies of the Extreme Ultraviolet (EUV) emission in the Fornax cluster of galaxies; a relatively nearby well-studied cluster with X-ray emitting cluster gas and a very large radio source. We examine both the large-scale (~size of the X-ray emitting cluster gas), and the small-scale (<arcmin) emission. We find that this cluster has large-scale diffuse EUV emission. However, at the sensitivity level of the existing EUVE data, this emission is due entirely to the low energy tail of the X-ray emitting gas. We have also examined small-scale structures in raw EUVE images of this cluster. We find that small-scale irregularities are present in all raw Deep Survey images as a result of small-scale detector effects. These effects can be removed by appropriate flat-fielding. After flat-fielding, the Fornax cluster still shows a few significant regions of small-scale EUV enhancement. We find that these are emission from stars and galaxies in the field. We find that at existing levels of sensitivity, there is no excess EUV emission in the cluster on either large or small scales.Comment: 6 pages, 3 eps figures, aastex5, Accepted to ApJ

    Evidence that the AGN dominates the radio emission in z ~ 1 radio-quiet quasars

    Get PDF
    This document is the Accepted Manuscript version of the following article: Sarah V. White, Matt J. Jarvis, Eleni Kalfoutnzou, Martin J. Hardcastle, Aprajita Verma, Mose M. Cao Orjales, and Jason Stevens, 'Evidence that the AGN dominates the radio emission in z ~ 1 radio quiet quasars', Monthly Notices of the Royal Astronomical Society, first published online 3 February 2017, DOI: https://doi.org/10.1093/mnras/stx284 Key results are presented in Table 4 and Figure 7, which illustrates where the RQQs lie in relation to the far-infrared--radio correlation © 2017 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.In order to understand the role of radio-quiet quasars (RQQs) in galaxy evolution, we must determine the relative levels of accretion and star-formation activity within these objects. Previous work at low radio flux-densities has shown that accretion makes a significant contribution to the total radio emission, in contrast with other quasar studies that suggest star formation dominates. To investigate, we use 70 RQQs from the Spitzer-Herschel Active Galaxy Survey. These quasars are all at zz ~ 1, thereby minimising evolutionary effects, and have been selected to span a factor of ~100 in optical luminosity, so that the luminosity dependence of their properties can be studied. We have imaged the sample using the Karl G. Jansky Very Large Array (JVLA), whose high sensitivity results in 35 RQQs being detected above 2 σ\sigma. This radio dataset is combined with far-infrared luminosities derived from grey-body fitting to Herschel photometry. By exploiting the far-infrared--radio correlation observed for star-forming galaxies, and comparing two independent estimates of the star-formation rate, we show that star formation alone is not sufficient to explain the total radio emission. Considering RQQs above a 2-σ\sigma detection level in both the radio and the far-infrared, 92 per cent are accretion-dominated, and the accretion process accounts for 80 per cent of the radio luminosity when summed across the objects. The radio emission connected with accretion appears to be correlated with the optical luminosity of the RQQ, whilst a weaker luminosity-dependence is evident for the radio emission connected with star formation.Peer reviewedFinal Accepted Versio

    Spitzer Observations of Centaurus A: Infrared Synchrotron Emission from the Northern Lobe

    Full text link
    We present measurements obtained with the Spitzer Space Telescope in five bands from 3.6-24 microns of the northern inner radio lobe of Centaurus A, the nearest powerful radio galaxy. We show that this emission is synchrotron in origin. Comparison with ultraviolet observations from GALEX shows that diffuse ultraviolet emission exists in a smaller region than the infrared but also coincides with the radio jet. We discuss the possibility, that synchrotron emission is responsible for the ultraviolet emission and conclude that further data are required to confirm this.Comment: 4 pages, accepted by ApJ

    Untangling cosmic magnetic fields: Faraday tomography at metre wavelengths with LOFAR

    Get PDF
    14 pages, 6 figures. Accepted for publication in "The Power of Faraday Tomography" special issue of GalaxiesThe technique of Faraday tomography is a key tool for the study ofmagnetised plasmas in the new era of broadband radio-polarisation observations. In particular, observations at metre wavelengths provide significantly better Faraday depth accuracies compared to traditional centimetre-wavelength observations. However, the effect of Faraday depolarisationmakes the polarised signal very challenging to detect at metre wavelengths (MHz frequencies). In this work, Faraday tomography is used to characterise the Faraday rotation properties of polarised sources found in data from the LOFAR Two-Metre Sky Survey (LoTSS). Of the 76 extragalactic polarised sources analysed here, we find that all host a radio-loud AGN (Active Galactic Nucleus). The majority of the sources (~64%) are large FRII radio galaxies with a median projected linear size of 710 kpc and median radio luminosity at 144 MHz of 4 × 10 26 W Hz -1 (with ~13% of all sources having a linear size > 1 Mpc). In several cases, both hotspots are detected in polarisation at an angular resolution of ~20'. One such case allowed a study of intergalactic magnetic fields on scales of 3.4 Mpc. Other detected source types include an FRI radio galaxy and at least eight blazars. Most sources display simple Faraday spectra, but we highlight one blazar that displays a complex Faraday spectrum, with two close peaks in the Faraday dispersion function.Peer reviewe

    Remnant radio-loud AGN in the Herschel-ATLAS field

    Get PDF
    Only a small fraction of observed active galactic nuclei (AGN) display large-scale radio emission associated with jets, yet these radio-loud AGN have become increasingly important in models of galaxy evolution. In determining the dynamics and energetics of the radio sources over cosmic time, a key question concerns what happens when their jets switch off. The resulting ‘remnant' radio-loud AGN have been surprisingly evasive in past radio surveys, and therefore statistical information on the population of radio-loud AGN in their dying phase is limited. In this paper, with the recent developments of Low-Frequency Array (LOFAR) and the Very Large Array, we are able to provide a systematically selected sample of remnant radio-loud AGN in the Herschel-ATLAS field. Using a simple core-detection method, we constrain the upper limit on the fraction of remnants in our radio-loud AGN sample to 9 per cent, implying that the extended lobe emission fades rapidly once the core/jets turn off. We also find that our remnant sample has a wide range of spectral indices (−1.5 ⩽ α1400150 ⩽ −0.5), confirming that the lobes of some remnants may possess flat spectra at low frequencies just as active sources do. We suggest that, even with the unprecedented sensitivity of LOFAR, our sample may still only contain the youngest of the remnant population

    MRC B0319-454: Probing the large-scale structure with a giant radio galaxy

    Full text link
    We present an investigation of the relationships between the radio properties of a giant radio galaxy MRC B0319-454 and the surrounding galaxy distribution with the aim of examining the influence of intergalactic gas and gravity associated with the large-scale structure on the evolution in the radio morphology. Our new radio continuum observations of the radio source, with high surface brightness sensitivity, images the asymmetries in the megaparsec-scale radio structure in total intensity and polarization. We compare these with the 3-D galaxy distribution derived from galaxy redshift surveys. Galaxy density gradients are observed along and perpendicular to the radio axis: the large-scale structure is consistent with a model wherein the galaxies trace the ambient intergalactic gas and the evolution of the radio structures are ram-pressure limited by this associated gas. Additionally, we have modeled the off-axis evolution of the south-west radio lobe as deflection of a buoyant jet backflow by a transverse gravitational field: the model is plausible if entrainment is small. The case study presented here is a demonstration that giant radio galaxies may be useful probes of the warm-hot intergalactic medium believed to be associated with moderately over dense galaxy distributions.Comment: 27 pages, 15 figures, accepted for publication in MNRA

    How frequent are close supermassive binary black holes in powerful jet sources?

    Get PDF
    24 pages, 36 figures. © 2018 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)Supermassive black hole binariesmay be detectable by an upcoming suite of gravitationalwave experiments. Their binary nature can also be revealed by radio jets via a short-period precession driven by the orbital motion as well as the geodetic precession at typically longer periods. We have investigated Karl G. Jansky Very Large Array and Multi-Element Radio Linked Interferometer Network (MERLIN) radio maps of powerful jet sources for morphological evidence of geodetic precession. For perhaps the best-studied source, Cygnus A, we find strong evidence for geodetic precession. Projection effects can enhance precession features, for which we find indications in strongly projected sources. For a complete sample of 33 3CR radio sources, we find strong evidence for jet precession in 24 cases (73 per cent). The morphology of the radio maps suggests that the precession periods are of the order of 10 6- 10 7 yr. We consider different explanations for the morphological features and conclude that geodetic precession is the best explanation. The frequently observed gradual jet angle changes in samples of powerful blazars can be explained by orbital motion. Both observations can be explained simultaneously by postulating that a high fraction of powerful radio sources have subparsec supermassive black hole binaries.We consider complementary evidence and discuss if any jetted supermassive black hole with some indication of precession could be detected as individual gravitational wave source in the near future. This appears unlikely, with the possible exception of M87.Peer reviewedFinal Published versio
    corecore