25 research outputs found

    Graph Reconstruction via Distance Oracles

    Full text link
    We study the problem of reconstructing a hidden graph given access to a distance oracle. We design randomized algorithms for the following problems: reconstruction of a degree bounded graph with query complexity O~(n3/2)\tilde{O}(n^{3/2}); reconstruction of a degree bounded outerplanar graph with query complexity O~(n)\tilde{O}(n); and near-optimal approximate reconstruction of a general graph

    Combinatorial search on graphs motivated by bioinformatics applications: A brief survey

    Full text link
    Abstract. The goal of this paper is to present a brief survey of a collection of methods and results from the area of combinatorial search [1,8] focusing on graph reconstruction using queries of different type. The study is motivated by applications to genome sequencing

    On the Power of Additive Combinatorial Search Model

    Full text link

    Inferring social networks from outbreaks

    Full text link
    Abstract. We consider the problem of inferring the most likely social network given connectivity constraints imposed by observations of outbreaks within the network. Given a set of vertices (or agents) V and constraints (or observations) Si ⊆ V we seek to find a minimum loglikelihood cost (or maximum likelihood) set of edges (or connections) E such that each Si induces a connected subgraph of (V, E). For the offline version of the problem, we prove an Ω(log(n)) hardness of approximation result for uniform cost networks and give an algorithm that almost matches this bound, even for arbitrary costs. Then we consider the online problem, where the constraints are satisfied as they arrive. We give an O(n log(n))-competitive algorithm for the arbitrary cost online problem, which has an Ω(n)-competitive lower bound. We look at the uniform cost case as well and give an O(n 2/3 log 2/3 (n))-competitive algorithm against an oblivious adversary, as well as an Ω ( √ n)-competitive lower bound against an adaptive adversary. We examine cases when the underlying network graph is known to be a star or a path, and prove matching upper and lower bounds of Θ(log(n)) on the competitive ratio for them.
    corecore