219 research outputs found

    Fast Readout of Split-Ring Resonators Made Simple and Low-Cost for Application in HPLC

    Get PDF
    Split-ring resonators (SRR) are simple electrical circuits that show a significant shift in resonance frequency even with the smallest changes in split capacitance, and thus in permittivity, electric conductivity, and dielectric losses of the split capacitor’s dielectric. Usually, the resonance frequency is derived from the frequency response, but recording the frequency spectrum takes a certain amount of time. Here, we present a new capillary split-ring resonator CaSRR with fast readout for liquid chromatography (LC), which is capable of accurately detecting very fast changes in split capacity. The proposed method is based on the detection of the transmitted signal at a single frequency that is analyzed by demodulation. The demodulated signal changes its amplitude depending on the shift of the resonance frequency. Our simple low-cost electronics enables an average sampling rate of 42 Hz with 128 averages of the demodulated signal and has a frequency stability of 840 mHz. Thus, a minimum change in permittivity of ∆εr,min = 11.26 × 10−3 can be detected. Finally, a chromatogram of one sugar (glucose) and one sugar alcohol (xylitol) is recorded using the SRR and is compared to a standard refractive index detector. © 2022 by the authors. Licensee MDPI, Basel, Switzerland

    The Tourist Experience of Heritage Urban Spaces: Valletta as a Case Study

    Get PDF
    This article provides an understanding of how tourists experience heritage urban spaces by investigating features that influence tourist experiences most. It is framed within urban design literature which refers to three elements of urban space namely physical setting (or form), activity, and meaning. These elements are used to explore how urban spaces are experienced by tourists. Its findings are derived from an in-depth qualitative analysis of interviews with tourists to Valletta, Malta. The research suggests that the intrinsic qualities of the space are relevant to the tourist experience but what is even more relevant are the interactions of the tourist with different elements within that space, namely interactions with surroundings, interactions with others, and interactions with self/meaning. Within this broad conceptual model, the research identifies important sub-themes. Some of these reinforce the findings of existing work on tourist experiences, but others are often under-estimated or neglected

    Five sepharose-bound ligands for the chromatographic purification of Clostridium collagenase and clostripain

    Get PDF
    Social media data have provoked a mixed response from researchers. While there is great enthusiasm for this new source of social data – Twitter data in particular – concerns are also expressed about their biases and unknown provenance and, consequently, their credibility for social research. This article seeks a middle path, arguing that we must develop better understanding of the construction and circulation of social media data to evaluate their appropriate uses and the claims that might be made from them. Building on sociotechnical approaches, we propose a high-level abstraction of the ‘pipeline’ through which social media data are constructed and circulated. In turn, we explore how this shapes the populations and samples that are present in social media data and the methods that generate data about them. We conclude with some broad principles for supporting methodologically informed social media research in the future

    Nonhuman humanitarianism: when ‘AI for good’ can be harmful

    Get PDF
    Artificial intelligence (AI) applications have been introduced in humanitarian operations in order to help with the significant challenges the sector is facing. This article focuses on chatbots which have been proposed as an efficient method to improve communication with, and accountability to affected communities. Chatbots, together with other humanitarian AI applications such as biometrics, satellite imaging, predictive modelling and data visualisations, are often understood as part of the wider phenomenon of ‘AI for social good’. The article develops a decolonial critique of humanitarianism and critical algorithm studies which focuses on the power asymmetries underpinning both humanitarianism and AI. The article asks whether chatbots, as exemplars of ‘AI for good’, reproduce inequalities in the global context. Drawing on a mixed methods study that includes interviews with seven groups of stakeholders, the analysis observes that humanitarian chatbots do not fulfil claims such as ‘intelligence’. Yet AI applications still have powerful consequences. Apart from the risks associated with misinformation and data safeguarding, chatbots reduce communication to its barest instrumental forms which creates disconnects between affected communities and aid agencies. This disconnect is compounded by the extraction of value from data and experimentation with untested technologies. By reflecting the values of their designers and by asserting Eurocentric values in their programmed interactions, chatbots reproduce the coloniality of power. The article concludes that ‘AI for good’ is an ‘enchantment of technology’ that reworks the colonial legacies of humanitarianism whilst also occluding the power dynamics at play

    Refined high-content imaging-based phenotypic drug screening in zebrafish xenografts

    Full text link
    Zebrafish xenotransplantation models are increasingly applied for phenotypic drug screening to identify small compounds for precision oncology. Larval zebrafish xenografts offer the opportunity to perform drug screens at high-throughput in a complex in vivo environment. However, the full potential of the larval zebrafish xenograft model has not yet been realized and several steps of the drug screening workflow still await automation to increase throughput. Here, we present a robust workflow for drug screening in zebrafish xenografts using high-content imaging. We established embedding methods for high-content imaging of xenografts in 96-well format over consecutive days. In addition, we provide strategies for automated imaging and analysis of zebrafish xenografts including automated tumor cell detection and tumor size analysis over time. We also compared commonly used injection sites and cell labeling dyes and show specific site requirements for tumor cells from different entities. We demonstrate that our setup allows us to investigate proliferation and response to small compounds in several zebrafish xenografts ranging from pediatric sarcomas and neuroblastoma to glioblastoma and leukemia. This fast and cost-efficient assay enables the quantification of anti-tumor efficacy of small compounds in large cohorts of a vertebrate model system in vivo. Our assay may aid in prioritizing compounds or compound combinations for further preclinical and clinical investigations

    Reduced blood flow and oxygenation in SA-1 tumours after electrochemotherapy with cisplatin

    Get PDF
    Electrochemotherapy is an antitumour treatment that utilises locally delivered electric pulses to increase cytotoxicity of chemotherapeutic drugs. Besides increased drug delivery, application of electric pulses affects tumour blood flow. The aim of this study was to determine tumour blood flow modifying effects of electrochemotherapy with cisplatin, its effects on tumour oxygenation and to determine their relation to antitumour effectiveness. Electrochemotherapy of SA-1 subcutaneous tumours was performed by application of electric pulses to the tumours, following administration of cisplatin. Tumour blood flow modifying effects of electrochemotherapy were determined by measurement of tumour perfusion using the Patent blue staining technique, determination of tumour blood volume, and microvascular permeability using contrast enhanced magnetic resonance imaging, and tumour oxygenation using electron paramagnetic resonance oximetry. Antitumour effectiveness was determined by tumour growth delay and the extent of tumour necrosis and apoptosis. Tumour treatment by electrochemotherapy induced 9.4 days tumour growth delay. Tumour blood flow was reduced instantaneously and persisted for several days. This reduction in tumour blood flow was reflected in reduced tumour oxygenation. The maximal reduction in partial oxygen pressure (pO2) levels was observed at 2 h after the treatment, with steady recovery to the pretreatment level within 48 h. The reduced tumour blood flow and oxygenation correlated well with the extent of tumour necrosis and tumour cells apoptosis induced by electrochemotherapy with cisplatin. Therefore, the data indicate that antitumour effectiveness of electrochemotherapy is not only due to increased cytotoxicity of cisplatin due to electroporation of tumour cells, but also due to anti-vascular effect of electrochemotherapy, which resulted in reduced tumour blood flow and oxygenation

    Calcium electroporation and electrochemotherapy for cancer treatment:Importance of cell membrane composition investigated by lipidomics, calorimetry and in vitro efficacy

    Get PDF
    Abstract Calcium electroporation is a novel anti-cancer treatment investigated in clinical trials. We explored cell sensitivity to calcium electroporation and electroporation with bleomycin, using viability assays at different time and temperature points, as well as heat calorimetry, lipidomics, and flow cytometry. Three cell lines: HT29 (colon cancer), MDA-MB231 (breast cancer), and HDF-n (normal fibroblasts) were investigated for; (a) cell survival dependent on time of addition of drug relative to electroporation (1.2 kV/cm, 8 pulses, 99 µs, 1 Hz), at different temperatures (37 °C, 27 °C, 17 °C); (b) heat capacity profiles obtained by differential scanning calorimetry without added calcium; (c) lipid composition by mass spectrometry; (d) phosphatidylserine in the plasma membrane outer leaflet using flow cytometry. Temperature as well as time of drug administration affected treatment efficacy in HT29 and HDF-n cells, but not MDA-MB231 cells. Interestingly the HT29 cell line displayed a higher phase transition temperature (approximately 20 °C) versus 14 °C (HDF-n) and 15 °C (MDA-MB231). Furthermore the HT29 cell membranes had a higher ratio of ethers to esters, and a higher expression of phosphatidylserine in the outer leaflet. In conclusion, lipid composition and heat capacity of the membrane might influence permeabilisation of cells and thereby the effect of calcium electroporation and electrochemotherapy

    Towards analytical typologies of plot systems: quantitative profile of five European cities

    Get PDF
    The importance of the plot (also referred to as ‘property’) as one of the fundamental elements of urban form is well recognized within the field of urban morphology. Despite the fact that it is often described as the basic element in the pattern of land divisions, which are essential as organizational frameworks for urban form, studies offering comprehensive descriptions and classifications of plot systems are quite scant. The aim of the paper is to introduce a classification of plot systems into typologies based on five European cities, in order to distinguish particular spatial differences and similarities in terms of their plot structure. The proposed typologies are developed using unsupervised k-means cluster analysis based on numeric attributes derived from central theories in urban morphology. The introduced typologies are essentially configurational, allowing collective systematic properties of plot systems to be captured. Numeric attributes include plot differentiation (or plot size), plot frontage and compactness ratio, corresponding to essential qualities of plot systems such as the capacity to carry differences in space, the ability to operate as interface between street and building and providing a framework for evolution of built form over time. All three attributes are translated into configurational measures in order to capture the context of the plot system, rather than the parameters of individual plots. The combination of these deductively defined variables with algorithmically defined classification methods results in seven plot types that can be used to scale up traditional urban morphological analysis to whole city regions and conduct substantial comparison of patterns within, but also between these regions. Further, it also makes it possible to describe commonly recognized plot patterns and discover new ones

    A dose escalation and pharmacokinetic study of biweekly pegylated liposomal doxorubicin, paclitaxel and gemcitabine in patients with advanced solid tumours

    Get PDF
    To determine the maximum tolerated doses (MTDs) and dose-limiting toxicities (DLTs) of pegylated liposomal doxorubicin (PLD), paclitaxel (PCX) and gemcitabine (GEM) combination administered biweekly in patients with advanced solid tumours. Twenty-two patients with advanced-stage solid tumours were treated with escalated doses of PLD on day 1 and PCX plus GEM on day 2 (starting doses: 10, 100 and 800 mg m−2, respectively) every 2 weeks. DLTs and pharmacokinetic (PK) parameters of all drugs were determined during the first cycle of treatment. All but six (73%) patients had previously received at least one chemotherapy regimen. The DLT dose level was reached at PLD 12 mg m−2, PCX 110 mg m−2 and GEM 1000 mg m−2 with neutropaenia being the dose-limiting event. Of the 86 chemotherapy cycles delivered, grade 3 and 4 neutropaenia occurred in 20% with no cases of febrile neutropaenia. Non-haematological toxicities were mild. The recommended MTDs are PLD 12 mg m−2, PCX 100 mg m−2 and GEM 1000 mg m−2 administered every 2 weeks. The PK data revealed no obvious drug interactions. Biweekly administration of PLD, PCX and GEM is a well-tolerated chemotherapy regimen, which merits further evaluation in various types of solid tumours
    corecore