29 research outputs found

    Parity Breaking in Nematic Tactoids

    Full text link
    We theoretically investigate under what conditions the director field in a spindle-shaped nematic droplet or tactoid obtains a twisted, parity-broken structure. By minimizing the sum of the bulk elastic and surface energies, we show that a twisted director field is stable if the twist and bend elastic constants are small enough compared to the splay elastic constant, but only if the droplet volume is larger than some minimum value. We furthermore show that the transition from an untwisted to a twisted director-field structure is a sharp function of the various control parameters. We predict that suspensions of rigid, rod-like particles cannot support droplets with a parity broken structure, whereas they could possibly occur in those of semi-flexible, worm-like particles.Comment: 20 pages, 9 figures, submitted to Journal of Physics: Condensed Matte

    Multiple light scattering in anisotropic random media

    Full text link
    In the last decade Diffusing Wave Spectroscopy (DWS) has emerged as a powerful tool to study turbid media. In this article we develop the formalism to describe light diffusion in general anisotropic turbid media. We give explicit formulas to calculate the diffusion tensor and the dynamic absorption coefficient, measured in DWS experiments. We apply our theory to uniaxial systems, namely nematic liquid crystals, where light is scattered from thermal fluctuations of the local optical axis, called director. We perform a detailed analysis of the two essential diffusion constants, parallel and perpendicular to the director, in terms of Frank elastic constants, dielectric anisotropy, and applied magnetic field. We also point out the relevance of our results to different liquid crystalline systems, such as discotic nematics, smectic-A phases, and polymer liquid crystals. Finally, we show that the dynamic absorption coefficient is the angular average over the inverse viscosity, which governs the dynamics of director fluctuations.Comment: 23 pages, 12 ps figures, to be published in Phys. Rev.
    corecore