270 research outputs found

    Atomic Properties of Lu+^+

    Full text link
    Singly ionised Lutetium has recently been suggested as a potential clock candidate. Here we report a joint experimental and theoretical investigation of \ce{Lu^+}. Measurements relevant to practical clock operation are made and compared to atomic structure calculations. Calculations of scalar and tensor polarizabilities for clock states over a range of wavelengths are also given. These results will be useful for future work with this clock candidate.Comment: 12 pages, 5 figure

    Magic wavelengths for the 5s−18s5s-18s transition in rubidium

    Get PDF
    Magic wavelengths, for which there is no differential ac Stark shift for the ground and excited state of the atom, allow trapping of excited Rydberg atoms without broadening the optical transition. This is an important tool for implementing quantum gates and other quantum information protocols with Rydberg atoms, and reliable theoretical methods to find such magic wavelengths are thus extremely useful. We use a high-precision all-order method to calculate magic wavelengths for the 5s−18s5s-18s transition of rubidium, and compare the calculation to experiment by measuring the light shift for atoms held in an optical dipole trap at a range of wavelengths near a calculated magic value

    Study of the correlation effects in Yb^+ and implications for parity violation

    Full text link
    Calculation of the energies, magnetic dipole hyperfine structure constants, E1 transition amplitudes between the low-lying states, and nuclear spin-dependent parity-nonconserving amplitudes for the ^2S_{1/2} - ^2D_{3/2,5/2} transitions in ^{171}Yb^+ ion is performed using two different approaches. First, we carried out many-body perturbation theory calculation considering Yb^+ as a monovalent system. Additional all-order calculations are carried out for selected properties. Second, we carried out configuration interaction calculation considering Yb as a 15-electron system and compared the results obtained by two methods. The accuracy of different methods is evaluated. We find that the monovalent description is inadequate for evaluation of some atomic properties due to significant mixing of the one-particle and the hole-two-particle configurations. Performing the calculation by such different approaches allowed us to establish the importance of various correlation effects for Yb^+ atomic properties for future improvement of theoretical precision in this complicated system.Comment: 11 pages;v2: minor changes and one reference adde
    • …
    corecore