36 research outputs found

    The Fermat-Torricelli problem in normed planes and spaces

    Full text link
    We investigate the Fermat-Torricelli problem in d-dimensional real normed spaces or Minkowski spaces, mainly for d=2. Our approach is to study the Fermat-Torricelli locus in a geometric way. We present many new results, as well as give an exposition of known results that are scattered in various sources, with proofs for some of them. Together, these results can be considered to be a minitheory of the Fermat-Torricelli problem in Minkowski spaces and especially in Minkowski planes. This demonstrates that substantial results about locational problems valid for all norms can be found using a geometric approach

    A generalization of the concept of distance based on the simplex inequality

    Get PDF
    We introduce and discuss the concept of n-distance, a generalization to n elements of the classical notion of distance obtained by replacing the triangle inequality with the so-called simplex inequality d(x1,…,xn)≤K∑i=1nd(x1,…,xn)zi,x1,…,xn,z∈X, where K=1. Here d(x1,…,xn)zi is obtained from the function d(x1,…,xn) by setting its ith variable to z. We provide several examples of n-distances, and for each of them we investigate the infimum of the set of real numbers K∈]0,1] for which the inequality above holds. We also introduce a generalization of the concept of n-distance obtained by replacing in the simplex inequality the sum function with an arbitrary symmetric function
    corecore