36 research outputs found
The Fermat-Torricelli problem in normed planes and spaces
We investigate the Fermat-Torricelli problem in d-dimensional real normed
spaces or Minkowski spaces, mainly for d=2. Our approach is to study the
Fermat-Torricelli locus in a geometric way. We present many new results, as
well as give an exposition of known results that are scattered in various
sources, with proofs for some of them. Together, these results can be
considered to be a minitheory of the Fermat-Torricelli problem in Minkowski
spaces and especially in Minkowski planes. This demonstrates that substantial
results about locational problems valid for all norms can be found using a
geometric approach
Controllability on infinite-dimensional manifolds
Following the unified approach of A. Kriegl and P.W. Michor (1997) for a
treatment of global analysis on a class of locally convex spaces known as
convenient, we give a generalization of Rashevsky-Chow's theorem for control
systems in regular connected manifolds modelled on convenient
(infinite-dimensional) locally convex spaces which are not necessarily
normable.Comment: 19 pages, 1 figur
A generalization of the concept of distance based on the simplex inequality
We introduce and discuss the concept of n-distance, a generalization to n elements of the classical notion of distance obtained by replacing the triangle inequality with the so-called simplex inequality
d(x1,…,xn)≤K∑i=1nd(x1,…,xn)zi,x1,…,xn,z∈X,
where K=1. Here d(x1,…,xn)zi is obtained from the function d(x1,…,xn) by setting its ith variable to z. We provide several examples of n-distances, and for each of them we investigate the infimum of the set of real numbers K∈]0,1] for which the inequality above holds. We also introduce a generalization of the concept of n-distance obtained by replacing in the simplex inequality the sum function with an arbitrary symmetric function