9,287 research outputs found

    Three-body spin-orbit forces from chiral two-pion exchange

    Full text link
    Using chiral perturbation theory, we calculate the density-dependent spin-orbit coupling generated by the two-pion exchange three-nucleon interaction involving virtual Δ\Delta-isobar excitation. From the corresponding three-loop Hartree and Fock diagrams we obtain an isoscalar spin-orbit strength Fso(kf)F_{\rm so}(k_f) which amounts at nuclear matter saturation density to about half of the empirical value of 9090 MeVfm5^5. The associated isovector spin-orbit strength Gso(kf)G_{\rm so}(k_f) comes out about a factor of 20 smaller. Interestingly, this three-body spin-orbit coupling is not a relativistic effect but independent of the nucleon mass MM. Furthermore, we calculate the three-body spin-orbit coupling generated by two-pion exchange on the basis of the most general chiral ππNN\pi\pi NN-contact interaction. We find similar (numerical) results for the isoscalar and isovector spin-orbit strengths Fso(kf)F_{\rm so}(k_f) and Gso(kf)G_{\rm so}(k_f) with a strong dominance of the p-wave part of the ππNN\pi\pi NN-contact interaction and the Hartree contribution.Comment: 8 pages, 4figure, published in : Physical Review C68, 054001 (2003

    Delta Effects in Pion-Nucleon Scattering and the Strength of the Two-Pion-Exchange Three-Nucleon Interaction

    Full text link
    We consider the relationship between P-wave pi-N scattering and the strength of the P-wave two-pion-exchange three-nucleon interaction (TPE3NI). We explain why effective theories that do not contain the delta resonance as an explicit degree of freedom tend to overestimate the strength of the TPE3NI. The overestimation can be remedied by higher-order terms in these ``delta-less'' theories, but such terms are not yet included in state-of-the-art chiral EFT calculations of the nuclear force. This suggests that these calculations can only predict the strength of the TPE3NI to an accuracy of +/-25%.Comment: 13 pages, 2 figures, uses eps

    Mathematical Physics

    Get PDF

    Electric Dipole Moments of Neutron-Odd Nuclei

    Full text link
    The electric dipole moments (EDMs) of neutron-odd nuclei with even protons are systematically evaluated. We first derive the relation between the EDM and the magnetic moment operators by making use of the core polarization scheme. This relation enables us to calculate the EDM of neutron-odd nuclei without any free parameters. From this calculation, one may find the best atomic system suitable for future EDM experiments.Comment: 4 page

    Finite size corrections in massive Thirring model

    Get PDF
    We calculate for the first time the finite size corrections in the massive Thirring model. This is done by numerically solving the equations of periodic boundary conditions of the Bethe ansatz solution. It is found that the corresponding central charge extracted from the 1/L1/L term is around 0.4 for the coupling constant of g0=π4{g_0}=-{\pi\over 4} and decreases down to zero when g0=π3{g_0}=-{\pi\over{3}}. This is quite different from the predicted central charge of the sine-Gordon model.Comment: 8 pages, Latex, 2 figure

    Initial correlations in nonequilibrium Falicov-Kimball model

    Full text link
    The Keldysh boundary problem in a nonequilibrium Falicov-Kimball model in infinite dimensions is studied within the truncated and self-consistent perturbation theories, and the dynamical mean-field theory. Within the model the system is started in equilibrium, and later a uniform electric field is turned on. The Kadanoff-Baym-Wagner equations for the nonequilibrium Green functions are derived, and numerically solved. The contributions of initial correlations are studied by monitoring the system evolution. It is found that the initial correlations are essential for establishing full electron correlations of the system and independent on the starting time of preparing the system in equilibrium. By examining the contributions of the initial correlations to the electric current and the double occupation, we find that the contributions are small in relation to the total value of those physical quantities when the interaction is weak, and significantly increase when the interaction is strong. The neglect of initial correlations may cause artifacts in the nonequilibrium properties of the system, especially in the strong interaction case

    The compact Q=2 Abelian Higgs model in the London limit: vortex-monopole chains and the photon propagator

    Full text link
    The confining and topological properties of the compact Abelian Higgs model with doubly-charged Higgs field in three space-time dimensions are studied. We consider the London limit of the model. We show that the monopoles are forming chain-like structures (kept together by ANO vortices) the presence of which is essential for getting simultaneously permanent confinement of singly-charged particles and breaking of the string spanned between doubly-charged particles. In the confinement phase the chains are forming percolating clusters while in the deconfinement (Higgs) phase the chains are of finite size. The described picture is in close analogy with the synthesis of the Abelian monopole and the center vortex pictures in confining non--Abelian gauge models. The screening properties of the vacuum are studied by means of the photon propagator in the Landau gauge.Comment: 27 pages, 37 figure

    Psychiatry and molecular genetics: a paradigm shift.

    Get PDF
    The late 20th century is witnessing an explosion of biomedical knowledge in the discipline of molecular genetics. In this regard many medical specialties will be transformed in terms of diagnosis and treatment. The technology and the recent clinical research in psychiatry is one of these
    corecore