99 research outputs found

    Volumetric imaging of shark tail hydrodynamics reveals a three-dimensional dual-ring vortex wake structure

    Get PDF
    Understanding how moving organisms generate locomotor forces is fundamental to the analysis of aerodynamic and hydrodynamic flow patterns that are generated during body and appendage oscillation. In the past, this has been accomplished using two-dimensional planar techniques that require reconstruction of three-dimensional flow patterns. We have applied a new, fully three-dimensional, volumetric imaging technique that allows instantaneous capture of wake flow patterns, to a classic problem in functional vertebrate biology: the function of the asymmetrical (heterocercal) tail of swimming sharks to capture the vorticity field within the volume swept by the tail. These data were used to test a previous three-dimensional reconstruction of the shark vortex wake estimated from two-dimensional flow analyses, and show that the volumetric approach reveals a different vortex wake not previously reconstructed from two-dimensional slices. The hydrodynamic wake consists of one set of dual-linked vortex rings produced per half tail beat. In addition, we use a simple passive shark-tail model under robotic control to show that the three-dimensional wake flows of the robotic tail differ from the active tail motion of a live shark, suggesting that active control of kinematics and tail stiffness plays a substantial role in the production of wake vortical patterns

    Spin correlations in p⃗p⃗→pnπ+\vec{p}\vec{p}\to pn\pi^{+} pion production near threshold

    Full text link
    A first measurement of longitudinal as well as transverse spin correlation coefficients for the reaction p⃗p⃗→pnπ+\vec{p}\vec{p}\to pn\pi^+ was made using a polarized proton target and a polarized proton beam. We report kinematically complete measurements for this reaction at 325, 350, 375 and 400 MeV beam energy. The spin correlation coefficients Axx+Ayy,Axx−Ayy,Azz,Axz,A_{xx}+A_{yy}, A_{xx}-A_{yy}, A_{zz}, A_{xz}, and the analyzing power Ay,A_{y}, as well as angular distributions for σ(θπ)\sigma(\theta_{\pi}) and the polarization observables Aij(θπ)A_{ij}(\theta_{\pi}) were extracted. Partial wave cross sections for dominant transition channels were obtained from a partial wave analysis that included the transitions with final state angular momenta of l≤1l\leq 1. The measurements of the p⃗p⃗→pnπ+{\vec{p}\vec{p}\to pn\pi^{+}} polarization observables are compared with the predictions from the J\"ulich meson exchange model. The agreement is very good at 325 MeV, but it deteriorates increasingly for the higher energies. At all energies agreement with the model is better than for the reaction p⃗p⃗→ppπ0{\vec{p}\vec{p}\to pp\pi^{0}}.Comment: Preprint, 21 pp, submitted to Phys. Rev. C. Keywords: Mesons, Polarization, Spin Correlations, Few body system
    • …
    corecore