432 research outputs found

    Non-Thermal Absorption and Quantum Efficiency of SINIS Bolometer

    Get PDF
    We study mechanisms of absorption in two essentially different types of superconductor-insulator-normal metal-insulator-superconductor (SINIS) bolometers with absorber directly placed on Si wafer and with absorber suspended above the substrate. The figure of merit for quantum photon absorption is quantum efficiency equal to the number of detected electrons for one photon. The efficiency of absorption is dramatically dependent on phonon losses to substrate and electrodes, and electron energy losses to electrodes through tunnel junctions. The maximum quantum efficiency can approach n = hf/kT = 160 at f = 350 GHz T = 0.1 K, and current responsivity dI/dP = e/kT in quantum gain bolometer case, contrary to photon counter mode with quantum efficiency of n = 1 and responsivity dI/dP = e/hf. In experiments, we approach intrinsic quantum efficiency up to n = 80 electrons per photon in bolometer with suspended absorber, contrary to quantum efficiency of about one for absorber on the substrate. In the case of suspended Cu and Pd absorber, Kapitsa resistance protect from power leak to Al electrodes

    Abelian symmetries in multi-Higgs-doublet models

    Full text link
    N-Higgs doublet models (NHDM) are a popular framework to construct electroweak symmetry breaking mechanisms beyond the Standard model. Usually, one builds an NHDM scalar sector which is invariant under a certain symmetry group. Although several such groups have been used, no general analysis of symmetries possible in the NHDM scalar sector exists. Here, we make the first step towards this goal by classifying the elementary building blocks, namely the abelian symmetry groups, with a special emphasis on finite groups. We describe a strategy that identifies all abelian groups which are realizable as symmetry groups of the NHDM Higgs potential. We consider both the groups of Higgs-family transformations only and the groups which also contain generalized CP transformations. We illustrate this strategy with the examples of 3HDM and 4HDM and prove several statements for arbitrary N.Comment: 33 pages, 2 figures; v2: conjecture 3 is proved and becomes theorem 3, more explanations of the main strategy are added, matches the published versio

    Partial level density of the n-quasiparticle excitations in the nuclei of the 39< A <201 region

    Full text link
    Level density and radiative strength functions are obtained from the analysis of two-step cascades intensities following the thermal neutrons capture. The data on level density are approximated by the sum of the partial level densities corresponding to n quasiparticles excitation. The most probable values of the collective enhancement factor of the level density are found together with the thresholds of the next Cooper nucleons pair breaking. These data allow one to calculate the level density of practically any nucleus in given spin window in the framework of model concepts, taking into account all known nuclear excitation types. The presence of an approximation results discrepancy with theoretical statements specifies the necessity of rather essentially developing the level density models. It also indicates the possibilities to obtain the essentially new information on nucleon correlation functions of the excited nucleus from the experiment.Comment: 29 pages, 8 figures, 2 table

    Electrooptic characterization of tunable cylindrical liquid crystal lenses

    Get PDF
    In this work, one-dimensional arrays of cylindrical adaptive liquid crystal lenses were manufactured and characterized; and test devices were filled with nematic liquid crystal. Comb interdigitated electrodes were designed as a mask pattern for the control electrode on the top glass substrates. A radial graded refractive index along each microsized lens was achieved by fabricating a layer of high resistance sheet deposited as a control electrode. These tunable lenses were switched by applying amplitude and frequency optimized waveforms on the control electrode. Phase profiles generated by the radial electric field distribution on each lens were measured by a convectional interferometric technique

    Separabelized Skyrme Interactions and Quasiparticle RPA

    Full text link
    A finite rank separable approximation for the quasiparticle RPA with Skyrme interactions is applied to study the low lying quadrupole and octupole states in some S isotopes and giant resonances in some spherical nuclei. It is shown that characteristics calculated within the suggested approach are in a good agreement with available experimental data.Comment: 12 pages, 2 figures, proceedings of the Seventh School-Seminar on Heavy Ion Physics, Dubna, Russia, May 27-June 1, 2002; to appear in Physics of Atomic Nucle

    Strong fragmentation of low-energy electromagnetic excitation strength in 117^{117}Sn

    Full text link
    Results of nuclear resonance fluorescence experiments on 117^{117}Sn are reported. More than 50 γ\gamma transitions with Eγ<4E_{\gamma} < 4 MeV were detected indicating a strong fragmentation of the electromagnetic excitation strength. For the first time microscopic calculations making use of a complete configuration space for low-lying states are performed in heavy odd-mass spherical nuclei. The theoretical predictions are in good agreement with the data. It is concluded that although the E1 transitions are the strongest ones also M1 and E2 decays contribute substantially to the observed spectra. In contrast to the neighboring even 116−124^{116-124}Sn, in 117^{117}Sn the 1−1^- component of the two-phonon [21+⊗31−][2^+_1 \otimes 3^-_1] quintuplet built on top of the 1/2+^+ ground state is proved to be strongly fragmented.Comment: 4 pages, 3 figure

    Symmetry Breaking in Few Layer Graphene Films

    Get PDF
    Recently, it was demonstrated that the quasiparticle dynamics, the layer-dependent charge and potential, and the c-axis screening coefficient could be extracted from measurements of the spectral function of few layer graphene films grown epitaxially on SiC using angle-resolved photoemission spectroscopy (ARPES). In this article we review these findings, and present detailed methodology for extracting such parameters from ARPES. We also present detailed arguments against the possibility of an energy gap at the Dirac crossing ED.Comment: 23 pages, 13 figures, Conference Proceedings of DPG Meeting Mar 2007 Regensburg Submitted to New Journal of Physic

    Search for the electric dipole excitations to the 3s1/2⊗[21+⊗31−]3s_{1/2} \otimes [2^{+}_{1} \otimes 3^{-}_{1}] multiplet in 117^{117}Sn

    Full text link
    The odd-mass 117^{117}Sn nucleus was investigated in nuclear resonance fluorescence experiments up to an endpoint energy of the incident photon spectrum of 4.1 MeV at the bremsstrahlung facility of the Stuttgart University. More than 50 mainly hitherto unknown levels were found. From the measurement of the scattering cross sections model independent absolute electric dipole excitation strengths were extracted. The measured angular distributions suggested the spins of 11 excited levels. Quasi-particle phonon model calculations including a complete configuration space were performed for the first time for a heavy odd-mass spherical nucleus. These calculations give a clear insight in the fragmentation and distribution of the E1E1, M1M1, and E2E2 excitation strength in the low energy region. It is proven that the 1−1^{-} component of the two-phonon [21+⊗31−][2^{+}_{1} \otimes 3^{-}_{1}] quintuplet built on top of the 1/2+1/2^{+} ground state is strongly fragmented. The theoretical calculations are consistent with the experimental data.Comment: 10 pages, 5 figure
    • …
    corecore